当前位置:网站首页>f.grid_sample
f.grid_sample
2022-07-31 01:53:00 【爱CV】
SPATIAL TRANSFORMER NETWORKS TUTORIAL
Author: Ghassen HAMROUNI
In this tutorial, you will learn how to augment your network using a visual attention mechanism called spatial transformer networks. You can read more about the spatial transformer networks in the DeepMind paper
Spatial transformer networks are a generalization of differentiable attention to any spatial transformation. Spatial transformer networks (STN for short) allow a neural network to learn how to perform spatial transformations on the input image in order to enhance the geometric invariance of the model. For example, it can crop a region of interest, scale and correct the orientation of an image. It can be a useful mechanism because CNNs are not invariant to rotation and scale and more general affine transformations.
grid_sample
,画了一个草图作为解释。
- 图像尺寸归一化:首先对图像的尺寸进行归一化,(-1,-1)表示原来图像的(0,0)位置,(1,1)表示原来图像的(H-1,W-1)位置,这样一来,特征点的位置也被归一化到了相应的位置。
- 构建grid:将归一化后的特征点罗列起来,构成一个尺度为1*1*K*2的张量,其中K表示特征数量,2分别表示xy坐标。
- 特征点位置反归一化:根据输入张量的H与W对grid(1,1,0,:)(表示第一个特征点,其余特征点类似)进行反归一化,其实就是按照比例进行缩放+平移,得到反归一化特征点在张量某个slice(通道)上的位置;但是这个位置可能并非为整像素,此时要对其进行双线性插值补齐,然后其余slice按照同样的方式进行双线性插值。注:代码中实际的就是双线性插值,并非文中讲的双三次插值;
- 输出维度:1*C*1*K。
One of the best things about STN is the ability to simply plug it into any existing CNN with very little modification.
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# get_ipython().run_line_magic('matplotlib', 'inline')
#
# Spatial Transformer Networks Tutorial
# =====================================
# **Author**: `Ghassen HAMROUNI <https://github.com/GHamrouni>`_
#
# .. figure:: /_static/img/stn/FSeq.png
#
# In this tutorial, you will learn how to augment your network using
# a visual attention mechanism called spatial transformer
# networks. You can read more about the spatial transformer
# networks in the `DeepMind paper <https://arxiv.org/abs/1506.02025>`__
#
# Spatial transformer networks are a generalization of differentiable
# attention to any spatial transformation. Spatial transformer networks
# (STN for short) allow a neural network to learn how to perform spatial
# transformations on the input image in order to enhance the geometric
# invariance of the model.
# For example, it can crop a region of interest, scale and correct
# the orientation of an image. It can be a useful mechanism because CNNs
# are not invariant to rotation and scale and more general affine
# transformations.
#
# One of the best things about STN is the ability to simply plug it into
# any existing CNN with very little modification.
#
# In[ ]:
# License: BSD
# Author: Ghassen Hamrouni
# from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # interactive mode
# Loading the data
# ----------------
#
# In this post we experiment with the classic MNIST dataset. Using a
# standard convolutional network augmented with a spatial transformer
# network.
#
#
# In[ ]:
from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Training dataset
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# Depicting spatial transformer networks
# --------------------------------------
#
# Spatial transformer networks boils down to three main components :
#
# - The localization network is a regular CNN which regresses the
# transformation parameters. The transformation is never learned
# explicitly from this dataset, instead the network learns automatically
# the spatial transformations that enhances the global accuracy.
# - The grid generator generates a grid of coordinates in the input
# image corresponding to each pixel from the output image.
# - The sampler uses the parameters of the transformation and applies
# it to the input image.
#
# .. figure:: /_static/img/stn/stn-arch.png
#
# .. Note::
# We need the latest version of PyTorch that contains
# affine_grid and grid_sample modules.
#
#
#
# In[ ]:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform the usual forward pass
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
# Training the model
# ------------------
#
# Now, let's use the SGD algorithm to train the model. The network is
# learning the classification task in a supervised way. In the same time
# the model is learning STN automatically in an end-to-end fashion.
#
#
# In[ ]:
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure the STN performances on MNIST.
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# Visualizing the STN results
# ---------------------------
#
# Now, we will inspect the results of our learned visual attention
# mechanism.
#
# We define a small helper function in order to visualize the
# transformations while training.
#
#
# In[ ]:
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()
pytorch的grid_sample返回不正确的值 - 问答 - 腾讯云开发者社区-腾讯云 (tencent.com)
如何使用光流和grid_sample对图像进行扭曲?
边栏推荐
- 二层广播风暴(产生原因+判断+解决)
- 【微信小程序】一文带你了解数据绑定、事件绑定以及事件传参、数据同步
- pc端判断当前使用浏览器类型
- After reading "MySQL Database Advanced Practice" (SQL Xiao Xuzhu)
- Problems that need to be solved by the tcp framework
- 934. The Shortest Bridge
- MySQL installation tutorial (detailed, package teaching package~)
- Software testing basic interface testing - getting started with Jmeter, you should pay attention to these things
- Programmer's debriefing report/summary
- Path and the largest
猜你喜欢
随机推荐
Validate XML documents
pc端判断当前使用浏览器类型
软件测试缺陷报告---定义,组成,缺陷的生命周期,缺陷跟踪产后处理流程,缺陷跟踪处理流程,缺陷跟踪的目的,缺陷管理工具
What have I experienced to become a tester who is harder than development?
Verify the integer input
Shell 脚本循环遍历日志文件中的值进行求和并计算平均值,最大值和最小值
1.非类型模板参数 2.模板的特化 3.继承讲解
Likou Daily Question - Day 46 - 704. Binary Search
mysql view
multiplayer-hlap 包有问题,无法升级的解决方案
221. 最大正方形
rpm install postgresql12
内网渗透——提权
Introduction and use of Drools WorkBench
GCC Rust is approved to be included in the mainline code base, or will meet you in GCC 13
What have I experienced when I won the offer of BAT and TMD technical experts?
《云原生的本手、妙手和俗手》——2022全国新高考I卷作文
Problems that need to be solved by the tcp framework
Gateway路由的配置方式
leetcode-128: longest continuous sequence