当前位置:网站首页>Data set partitioning and cross-validation
Data set partitioning and cross-validation
2022-07-31 05:32:00 【Erosion_ww】
数据集划分
训练集 验证集 测试集
- The training set is used to build the model
- The validation set is used to fine-tune the model during construction,辅助模型构建,可以重复使用.(When a validation set exists,We select a portion from the training set to test the model,A portion of the training set data is reserved as a validation set)
- 测试集用于检验模型,评估模型的准确率.
Hold-out method
The default will be the dataset75%作为训练集,数据集的25%作为测试集.
交叉验证
1.Leave-one-out verification
Divide a large dataset into k个小数据集,k等于数据集中数据的个数,每次只使用一个作为测试集,剩下的全部作为训练集,这种方法得出的结果与训练整个测试集的期望值最为接近,但是成本过于庞大,Suitable for small sample datasets.
2. K折交叉验证
将数据集分成k个子集,每次选k-1个子集作为训练集,剩下的那个子集作为测试集.一共进行k次,将kThe average cross-validation correct rate of times is used as the result.train_test_split,默认训练集、测试集比例为3:1.如果是5折交叉验证,训练集比测试集为4:1;10折交叉验证训练集比测试集为9:1.数据量越大,模型准确率越高.
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn import metrics
data = load_iris() #获取鸢尾花数据集
X = data.data
y = data.target
kf = KFold(n_splits=5, random_state=None) # 5折交叉验证
i = 1
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i,kf.n_splits))
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
model = LogisticRegression(random_state=1)
model.fit(X_train, y_train)
pred_test = model.predict(X_test)
score = metrics.accuracy_score(y_test, pred_test)
print('accuracy_score', score)
i += 1
pred = model.predict_proba(X_test)[:, 1]
3. 分层交叉验证
Hierarchy is the rearrangement of data,Each fold can better represent the whole.
on a binary classification problem,There are two types of raw data(F和M),F:MThe proportion of data volume is approximately 1:3;划分了5折,every foldF和MThe proportions remain the same as the original data(1:3).
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
data = load_iris()
X = data.data
y = data.target
skf = StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_index, test_index in skf.split(X,y):
print("Train:", train_index, "Validation:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
model = LogisticRegression()
scores = cross_val_score(model,X,y,cv=skf)
print("straitified cross validation scores:{}".format(scores))
print("Mean score of straitified cross validation:{:.2f}".format(scores.mean()))
4. 重复交叉验证
其实就是重复n次k-fold,Each repetition has a different randomness.
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn import metrics
data = load_iris()
X = data.data
y = data.target
kf = RepeatedKFold(n_splits=5, n_repeats=2, random_state=None)
for train_index, test_index in kf.split(X):
print("Train:", train_index, "Validation:",test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
i = 1
for train_index, test_index in kf.split(X, y):
print('\n{} of kfold {}'.format(i,i))
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
model = LogisticRegression(random_state=1)
model.fit(X_train, y_train)
pred_test = model.predict(X_test)
score = metrics.accuracy_score(y_test, pred_test)
print('accuracy_score', score)
i += 1
#pred_test = model.predict(X_test)
pred = model.predict_proba(X_test)[:, 1]
边栏推荐
猜你喜欢

为什么要用Flink,怎么入门使用Flink?

Lock wait timeout exceeded解决方案

Redis进阶 - 缓存问题:一致性、穿击、穿透、雪崩、污染等.

110道 MySQL面试题及答案 (持续更新)

Multiple table query of sql statement

mysql stored procedure

matlab abel变换图片处理

The interviewer asked me how to divide the database and the table?Fortunately, I summed up a set of eight-part essays

SQL行列转换

Summary of MySQL common interview questions (recommended collection!!!)
随机推荐
Duplicate entry 'XXX' for key 'XXX.PRIMARY' solution.
三次握手与四次挥手
数据集划分以及交叉验证法
Lock wait timeout exceeded解决方案
CentOS7 install MySQL graphic detailed tutorial
MySQL优化:从十几秒优化到三百毫秒
MySQL事务隔离级别详解
Unity mobile game performance optimization series: performance tuning for the CPU side
Quickly master concurrent programming --- the basics
[Detailed explanation of ORACLE Explain]
Redis进阶 - 缓存问题:一致性、穿击、穿透、雪崩、污染等.
【JS面试题】面试官:“[1,2,3].map(parseInt)“ 输出结果是什么?答上来就算你通过面试
质量小议12 -- 以测代评
限流的原理
如何将项目部署到服务器上(全套教程)
信息系统项目管理师核心考点(五十五)配置管理员(CMO)的工作
Input length must be multiple of 8 when decrypting with padded cipher
<urlopen error [Errno 11001] getaddrinfo failed>的解决、isinstance()函数初略介绍
Unity Framework Design Series: How Unity Designs Network Frameworks
A complete introduction to JSqlParse of Sql parsing and conversion