当前位置:网站首页>MYSQL-批量插入数据
MYSQL-批量插入数据
2022-08-01 00:16:00 【三月不灭】
批量插入数据
存储过程也有返回值,存储过程有一个或多个返回值,函数有且只有一个返回值
往表里插入1000w数据
1.建表
create database bigData;
use bigData;
create table dept(
id int unsigned primary key auto_increment,
deptno mediumint unsigned not null default 0,
dname varchar(20) not null default "",
loc varchar(13) not null default ""
)engine=innodb default charset=GBK;
CREATE TABLE emp(
id int unsigned primary key auto_increment,
empno mediumint unsigned not null default 0,
ename varchar(20) not null default "",
job varchar(9) not null default "",
mgr mediumint unsigned not null default 0,
hiredate date not null,
sal decimal(7,2) not null,
comm decimal(7,2) not null,
deptno mediumint unsigned not null default 0
)ENGINE=INNODB DEFAULT CHARSET=GBK;
2.设置参数log_bin_trust_function_creators
由于在做大数据插入时,mysql自身会产生一个错,要设置一个参数,二进制日志这样的一个开启的功能模块
创建函数,假如报错:This function has none of-DETERMINISTIC....
#由于开启过慢查询日志,因为我们开启了bin-log,我们就必须为我们的function指定一个
show variables like 'log_bin_trust_function_creators';
set global log_bin_trust_function_creators=1;
#这样添加了参数以后,如果mysqld重启,上述参数又会消失,永久方法:
windows下my.ini[mysqld]加上 log_bin_trust_function_creators=1
linux下letc/my.cnf下my.cnf[mysqld]加上 log_bin_trust_function_creators=1
3.创建随机函数,保证每条数据都不同
- 随机产生字符串
- 随机产生部门编号
//函数:随机产生字符串
delimiter $$
create function ran_string(n int) returns varchar(255)
begin
declare chars_str varchar(100) default 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str = concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i=i+1;
end while;
return return_str;
end $$
//函数:随机产生部门编号
delimiter $$
create function rand_num() returns int(5)
begin
declare i int default 0;
set i=floor(100+rand()*10);
return i;
end $$
# 如果要删除函数,则执行:drop function rand_str
4.创建存储过程
- 创建往emp表中插入数据的存储过程
- 创建往dept表中插入数据的存储过程
#存储过程:创建往emp表中插入数据的存储过程
delimiter $$ :
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0; #设置自动提交为0,就不用每插入一条数据就commit,反复commit影响执行效率
repeat
set i = i+1;
insert into emp(empno,ename,job,mgr,hiredate,sal,comm,deptno) values((start+i),ran_string(6),'salesman',0001,curdate(),2000,400,rand_num());
until i=max_num
end repeat;
commit; #自动一次性提交
end $$
#删除
# DELIMITER;
# drop PROCEDURE insert_emp;
#存储过程:创建往dept表中插入数据的存储过程
delimiter $$
create procedure insert_dept(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i+1;
insert into dept(deptno,dname,loc) values((start+i),ran_string(10),ran_string(8));
until i=max_num
end repeat;
commit;
end $$
#删除
#DELIMITER;
#drop PROCEDURE insert_dept;
5.调用存储过程
delimiter ; #先恢复成以;结束
CALL insert_dept(100,10);
CALL insert_emp(100,5);
当初如大量数据时,用时就会很多。select可能时间就比较长,这时候如果开了慢查询日志,超时的sql语句就会被记录到日志中
批量删除某个表上的索引
DELIMITER $$
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
DECLARE done INT DEFAULT 0;
DECLARE ct INT DEFAULT 0;
DECLARE _index VARCHAR(200) DEFAULT '';
DECLARE _cur CURSOR FOR SELECT index_name FROM information_schema.STATISTICS WHERE
table_schema=dbname AND table_name=tablename AND seq_in_index=1 AND index_name <>'PRIMARY' ;
DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
OPEN _cur;
FETCH _cur INTO _index;
WHILE _index<>'' DO
SET @str = CONCAT("drop index ",_index," on ",tablename );
PREPARE sql_str FROM @str ;
EXECUTE sql_str;
DEALLOCATE PREPARE sql_str;
SET _index='';
FETCH _cur INTO _index;
END WHILE;
CLOSE _cur;
END $$
#执行
CALL proc_drop_index("dbname","tablename");
边栏推荐
- EntityFramework保存到SQLServer 小数精度丢失
- cobaltstrike
- (26) About menu of the top menu of Blender source code analysis
- mysql having的用法
- 谷歌『云开发者速查表』;清华3D人体数据集;商汤『通用视觉框架』公开课;Web3极简入门指南;高效深度学习免费书;前沿论文 | ShowMeAI资讯日报
- Carefully organize 16 MySQL usage specifications to reduce problems by 80% and recommend sharing with the team
- Matlab / Arcgis处理nc数据
- 编译型语言和解释型语言的区别
- 【MATLAB项目实战】LDPC-BP信道编码
- 自动化机器学习pycaret: PyCaret Basic Auto Classification LightGBM
猜你喜欢
Recommendation system: Summary of common evaluation indicators [accuracy rate, precision rate, recall rate, hit rate, (normalized depreciation cumulative gain) NDCG, mean reciprocal ranking (MRR), ROC
【云驻共创】【HCSD大咖直播】亲授大厂面试秘诀
UOS - WindTerm use
pycaret源码分析:下载数据集\Lib\site-packages\pycaret\datasets.py
逐步手撕轮播图3(保姆级教程)
MLP神经网络,GRNN神经网络,SVM神经网络以及深度学习神经网络对比识别人体健康非健康数据
类和对象:中
Kyoto University:Masaki Waga | 黑箱环境中强化学习的动态屏蔽
pycaret source code analysis: download dataset\Lib\site-packages\pycaret\datasets.py
Automated machine learning pycaret: PyCaret Basic Auto Classification LightGBM
随机推荐
高等代数_证明_任何矩阵都相似于一个上三角矩阵
谷歌『云开发者速查表』;清华3D人体数据集;商汤『通用视觉框架』公开课;Web3极简入门指南;高效深度学习免费书;前沿论文 | ShowMeAI资讯日报
硬件设备计算存储及数据交互杂谈
Team of Professor Chen Jianyu of Tsinghua University | Contact Safety Reinforcement Learning Framework Based on Contact-rich Robot Operation
Flutter教程之 01配置环境并运行demo程序 (教程含源码)
The difference between /usr/local/bin and /usr/bin
[微服务]分布式事务解决方案-Seata
继承的注意事项
【Acwing】The 62nd Weekly Game Solution
一行代码解决CoreData托管对象属性变更在SwiftUI中无动画效果的问题
面试突击69:TCP 可靠吗?为什么?
编程语言是什么
Design of Fire and Anti-theft System Based on Single Chip GSM
Weekly Summary
[AMEX] LGBM Optuna美国运通信用卡欺诈赛 kaggle
Matlab/ArcGIS processing GPM global monthly precipitation data
C# Rectangle基本用法和图片切割
Binary tree traversal non-recursive program -- using stack to simulate system stack
Kyoto University: Masaki Waga | Dynamic Masking for Reinforcement Learning in Black Box Environments
简单的vim配置