当前位置:网站首页>可視化yolov5格式數據集(labelme json文件)
可視化yolov5格式數據集(labelme json文件)
2022-07-03 01:53:00 【athrunsunny】
在自己的項目中,常常會遇到數據集少的情况,但是網上有些標注好的數據,或多或少和自己的項目的標注要求有差別,又不想重新標注,只想微調一下,但是yolov5的原生格式修改起來不直觀,這時候可以將yolov5格式的數據轉成labelme的json格式,這樣就方便對數據的標注進行微調,同時也不用花大心思去標注大數據,减少人工成本。
# -*- coding: utf-8 -*-
"""
Time: 2021.10.26
Author: Athrunsunny
Version: V 0.1
File: yolotolabelme.py
Describe: Functions in this file is change the dataset format to labelme json file
"""
import base64
import io
import os
import numpy as np
import json
from glob import glob
import cv2
import shutil
import yaml
from tqdm import tqdm
import PIL.Image
ROOT_DIR = os.getcwd()
VERSION = '4.5.7' # 根據labelme的版本來修改
def img_arr_to_b64(img_arr):
img_pil = PIL.Image.fromarray(img_arr)
f = io.BytesIO()
img_pil.save(f, format="PNG")
img_bin = f.getvalue()
if hasattr(base64, "encodebytes"):
img_b64 = base64.encodebytes(img_bin)
else:
img_b64 = base64.encodestring(img_bin)
return img_b64
def process_point(points, cls):
info = list()
for point in points:
shape_info = dict()
shape_info['label'] = cls[int(point[0])]
if point is None:
shape_info['points'] = [[], []]
else:
shape_info['points'] = [[point[1], point[2]],
[point[3], point[4]]]
shape_info['group_id'] = None
shape_info['shape_type'] = 'rectangle'
shape_info['flags'] = dict()
info.append(shape_info)
return info
def create_json(img, imagePath, filename, info):
data = dict()
data['version'] = VERSION
data['flags'] = dict()
data['shapes'] = info
data['imagePath'] = imagePath
height, width = img.shape[:2]
data['imageData'] = img_arr_to_b64(img).decode('utf-8')
data['imageHeight'] = height
data['imageWidth'] = width
jsondata = json.dumps(data, indent=4, separators=(',', ': '))
f = open(filename, 'w')
f.write(jsondata)
f.close()
def read_txt(path):
assert os.path.exists(path)
with open(path, mode='r', encoding="utf-8") as f:
content = f.readlines()
content = np.array(content)
res = []
for index, item in enumerate(content):
string = item.split(' ')
res.append(list(map(np.float64, string)))
return np.array(res)
def load_dataset_info(path=ROOT_DIR):
yamlpath = glob(path + "\\*.yaml")[0]
with open(yamlpath, "r", encoding="utf-8") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
return data
def reconvert_list(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[0] / dw
w = box[2] / dw
y = box[1] / dh
h = box[3] / dh
x1 = ((x + 1) * 2 - w) / 2.
y1 = ((y + 1) * 2 - h) / 2.
x2 = ((x + 1) * 2 + w) / 2.
y2 = ((y + 1) * 2 + h) / 2.
return x1, y1, x2, y2
def reconvert_np(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[:, :1] / dw
w = box[:, 2:3] / dw
y = box[:, 1:2] / dh
h = box[:, 3:4] / dh
box[:, :1] = ((x + 1) * 2 - w) / 2.
box[:, 2:3] = ((x + 1) * 2 + w) / 2.
box[:, 1:2] = ((y + 1) * 2 - h) / 2.
box[:, 3:4] = ((y + 1) * 2 + h) / 2.
return box
def txt2json(proctype, cls, path=ROOT_DIR):
process_image_path = os.path.join(path, proctype, 'images')
process_label_path = os.path.join(path, proctype, 'labels')
externs = ['png', 'jpg', 'JPEG', 'BMP', 'bmp']
imgfiles = list()
for extern in externs:
imgfiles.extend(glob(process_image_path + "\\*." + extern))
createfile = os.path.join(ROOT_DIR, 'createjson', proctype)
if not os.path.exists(createfile):
os.makedirs(createfile)
for image_path in tqdm(imgfiles):
frame = cv2.imread(image_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
height, width = frame.shape[:2]
size = (width, height)
imgfilename = image_path.replace("\\", "/").split("/")[-1]
imgname = '.'.join(imgfilename.split('.')[:-1])
jsonpath = os.path.join(createfile, imgname + '.json')
txtpath = os.path.join(process_label_path, imgname + '.txt')
label_and_point = read_txt(txtpath)
label_and_point[:, 1:] = reconvert_np(size, label_and_point[:, 1:])
info = process_point(label_and_point, cls)
create_json(frame, imgname, jsonpath, info)
shutil.copy(image_path, createfile)
def yolotolabelme(path=ROOT_DIR):
pathtype = list()
if 'train' in os.listdir(path):
pathtype.append('train')
if 'valid' in os.listdir(path):
pathtype.append('valid')
if 'test' in os.listdir(path):
pathtype.append('test')
cls = load_dataset_info()['names']
for file_type in pathtype:
print("Processing image type {} \n".format(file_type))
txt2json(file_type, cls)
if __name__ == "__main__":
yolotolabelme()
將以上代碼命名為yolotolabelme.py並存放在數據集的根目錄下

在運行程序前先將上面代碼中import的幾個庫安裝一下,之後運行

運行之後會在該路徑下生成createjson文件夾

轉換的數據會根據train或valid生成在createjson文件夾下,之後可通過labelme打開

由於我的test數據集是空的,所以轉換後也是空的,使用labelme打開該train路徑下的文件可以可以看到對應的標注

边栏推荐
- Three core issues of concurrent programming - "deep understanding of high concurrent programming"
- [AUTOSAR cantp] -2.11-uds diagnostic response frame data segment data padding data filling and data optimization data optimization (Theory + configuration)
- 【数据挖掘】任务2:医学数据库MIMIC-III数据处理
- Leetcode skimming questions_ Sum of two numbers II - enter an ordered array
- [camera topic] turn a drive to light up the camera
- 【数据挖掘】任务5:K-means/DBSCAN聚类:双层正方形
- 疫情当头,作为Leader如何进行团队的管理?| 社区征文
- Return the only different value (de duplication)
- STM32 - vibration sensor control relay on
- How to refresh the opening amount of Oracle ERP
猜你喜欢

Take you ten days to easily complete the go micro service series (I)

Installation and use of serial port packet capturing / cutting tool

Vant 实现简单的登录注册模块以及个人用户中心

STM32 - GPIO input / output mode
![[shutter] animation animation (animatedwidget animation use process | create animation controller | create animation | create animatedwidget animation component | animation operation)](/img/5e/1d451a820eadbd05112b41bd0bc7d6.gif)
[shutter] animation animation (animatedwidget animation use process | create animation controller | create animation | create animatedwidget animation component | animation operation)

His experience in choosing a startup company or a big Internet company may give you some inspiration

Smart management of Green Cities: Digital twin underground integrated pipe gallery platform

Certaines fonctionnalités du développement d'applets

Why can't the start method be called repeatedly? But the run method can?

Processing of tree structure data
随机推荐
Network security OpenVAS
CF1617B Madoka and the Elegant Gift、CF1654C Alice and the Cake、 CF1696C Fishingprince Plays With Arr
"Jetpack - livedata parsing"
简易分析fgui依赖关系工具
Smart management of Green Cities: Digital twin underground integrated pipe gallery platform
Network security - password cracking
[data mining] task 4:20newsgroups clustering
Types of map key and object key
2022-02-15 reading the meta module inspiration of the influxdb cluster
疫情当头,作为Leader如何进行团队的管理?| 社区征文
【Camera专题】手把手撸一份驱动 到 点亮Camera
网络安全-扫描
网络安全-钓鱼
Technology sharing | Frida's powerful ability to realize hook functions
网络安全-漏洞与木马
Rockchip3399 start auto load driver
【数据挖掘】任务5:K-means/DBSCAN聚类:双层正方形
Three core issues of concurrent programming - "deep understanding of high concurrent programming"
【數據挖掘】任務6:DBSCAN聚類
Problems encountered in small program development of dark horse shopping mall