当前位置:网站首页>可視化yolov5格式數據集(labelme json文件)
可視化yolov5格式數據集(labelme json文件)
2022-07-03 01:53:00 【athrunsunny】
在自己的項目中,常常會遇到數據集少的情况,但是網上有些標注好的數據,或多或少和自己的項目的標注要求有差別,又不想重新標注,只想微調一下,但是yolov5的原生格式修改起來不直觀,這時候可以將yolov5格式的數據轉成labelme的json格式,這樣就方便對數據的標注進行微調,同時也不用花大心思去標注大數據,减少人工成本。
# -*- coding: utf-8 -*-
"""
Time: 2021.10.26
Author: Athrunsunny
Version: V 0.1
File: yolotolabelme.py
Describe: Functions in this file is change the dataset format to labelme json file
"""
import base64
import io
import os
import numpy as np
import json
from glob import glob
import cv2
import shutil
import yaml
from tqdm import tqdm
import PIL.Image
ROOT_DIR = os.getcwd()
VERSION = '4.5.7' # 根據labelme的版本來修改
def img_arr_to_b64(img_arr):
img_pil = PIL.Image.fromarray(img_arr)
f = io.BytesIO()
img_pil.save(f, format="PNG")
img_bin = f.getvalue()
if hasattr(base64, "encodebytes"):
img_b64 = base64.encodebytes(img_bin)
else:
img_b64 = base64.encodestring(img_bin)
return img_b64
def process_point(points, cls):
info = list()
for point in points:
shape_info = dict()
shape_info['label'] = cls[int(point[0])]
if point is None:
shape_info['points'] = [[], []]
else:
shape_info['points'] = [[point[1], point[2]],
[point[3], point[4]]]
shape_info['group_id'] = None
shape_info['shape_type'] = 'rectangle'
shape_info['flags'] = dict()
info.append(shape_info)
return info
def create_json(img, imagePath, filename, info):
data = dict()
data['version'] = VERSION
data['flags'] = dict()
data['shapes'] = info
data['imagePath'] = imagePath
height, width = img.shape[:2]
data['imageData'] = img_arr_to_b64(img).decode('utf-8')
data['imageHeight'] = height
data['imageWidth'] = width
jsondata = json.dumps(data, indent=4, separators=(',', ': '))
f = open(filename, 'w')
f.write(jsondata)
f.close()
def read_txt(path):
assert os.path.exists(path)
with open(path, mode='r', encoding="utf-8") as f:
content = f.readlines()
content = np.array(content)
res = []
for index, item in enumerate(content):
string = item.split(' ')
res.append(list(map(np.float64, string)))
return np.array(res)
def load_dataset_info(path=ROOT_DIR):
yamlpath = glob(path + "\\*.yaml")[0]
with open(yamlpath, "r", encoding="utf-8") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
return data
def reconvert_list(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[0] / dw
w = box[2] / dw
y = box[1] / dh
h = box[3] / dh
x1 = ((x + 1) * 2 - w) / 2.
y1 = ((y + 1) * 2 - h) / 2.
x2 = ((x + 1) * 2 + w) / 2.
y2 = ((y + 1) * 2 + h) / 2.
return x1, y1, x2, y2
def reconvert_np(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[:, :1] / dw
w = box[:, 2:3] / dw
y = box[:, 1:2] / dh
h = box[:, 3:4] / dh
box[:, :1] = ((x + 1) * 2 - w) / 2.
box[:, 2:3] = ((x + 1) * 2 + w) / 2.
box[:, 1:2] = ((y + 1) * 2 - h) / 2.
box[:, 3:4] = ((y + 1) * 2 + h) / 2.
return box
def txt2json(proctype, cls, path=ROOT_DIR):
process_image_path = os.path.join(path, proctype, 'images')
process_label_path = os.path.join(path, proctype, 'labels')
externs = ['png', 'jpg', 'JPEG', 'BMP', 'bmp']
imgfiles = list()
for extern in externs:
imgfiles.extend(glob(process_image_path + "\\*." + extern))
createfile = os.path.join(ROOT_DIR, 'createjson', proctype)
if not os.path.exists(createfile):
os.makedirs(createfile)
for image_path in tqdm(imgfiles):
frame = cv2.imread(image_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
height, width = frame.shape[:2]
size = (width, height)
imgfilename = image_path.replace("\\", "/").split("/")[-1]
imgname = '.'.join(imgfilename.split('.')[:-1])
jsonpath = os.path.join(createfile, imgname + '.json')
txtpath = os.path.join(process_label_path, imgname + '.txt')
label_and_point = read_txt(txtpath)
label_and_point[:, 1:] = reconvert_np(size, label_and_point[:, 1:])
info = process_point(label_and_point, cls)
create_json(frame, imgname, jsonpath, info)
shutil.copy(image_path, createfile)
def yolotolabelme(path=ROOT_DIR):
pathtype = list()
if 'train' in os.listdir(path):
pathtype.append('train')
if 'valid' in os.listdir(path):
pathtype.append('valid')
if 'test' in os.listdir(path):
pathtype.append('test')
cls = load_dataset_info()['names']
for file_type in pathtype:
print("Processing image type {} \n".format(file_type))
txt2json(file_type, cls)
if __name__ == "__main__":
yolotolabelme()
將以上代碼命名為yolotolabelme.py並存放在數據集的根目錄下

在運行程序前先將上面代碼中import的幾個庫安裝一下,之後運行

運行之後會在該路徑下生成createjson文件夾

轉換的數據會根據train或valid生成在createjson文件夾下,之後可通過labelme打開

由於我的test數據集是空的,所以轉換後也是空的,使用labelme打開該train路徑下的文件可以可以看到對應的標注

边栏推荐
- STM32 - vibration sensor control relay on
- 技术大佬准备就绪,话题C位由你决定
- Query product cases - page rendering data
- Vant 实现简单的登录注册模块以及个人用户中心
- Huakaiyun | virtual host: IP, subnet mask, gateway, default gateway
- C application interface development foundation - form control (1) - form form
- NCTF 2018 part Title WP (1)
- 【數據挖掘】任務6:DBSCAN聚類
- Anna: Beibei, can you draw?
- String splicing function of MySQL
猜你喜欢

A simple tool for analyzing fgui dependencies

STM32 - switch of relay control lamp

"Jetpack - livedata parsing"

Huakaiyun (Zhiyin) | virtual host: what is a virtual host

Telecom Customer Churn Prediction challenge

Take you ten days to easily complete the go micro service series (I)

STM32 - vibration sensor control relay on

STM32 - GPIO input / output mode

查询商品案例-页面渲染数据

【数据挖掘】任务4:20Newsgroups聚类
随机推荐
Smart management of Green Cities: Digital twin underground integrated pipe gallery platform
Related concepts of GDB in embedded system
NCTF 2018 part Title WP (1)
¢ growth path and experience sharing of getting an offer
云原生题目整理(待更新)
LabVIEW安装第三方VISA软件后NI VISA失效
疫情當頭,作為Leader如何進行團隊的管理?| 社區征文
疫情当头,作为Leader如何进行团队的管理?| 社区征文
In the face of difficult SQL requirements, HQL is not afraid
【数据挖掘】任务1:距离计算
7-25 read numbers (loop switch)
Processing of tree structure data
Query product cases - page rendering data
【数据挖掘】任务3:决策树分类
网络安全-最简单的病毒
STM32 - introduction of external interrupts exti and NVIC
全链路数字化转型下,零售企业如何打开第二增长曲线
Network security - dynamic routing protocol rip
[camera topic] how to save OTP data in user-defined nodes
网络安全-浅谈安全威胁