当前位置:网站首页>可視化yolov5格式數據集(labelme json文件)
可視化yolov5格式數據集(labelme json文件)
2022-07-03 01:53:00 【athrunsunny】
在自己的項目中,常常會遇到數據集少的情况,但是網上有些標注好的數據,或多或少和自己的項目的標注要求有差別,又不想重新標注,只想微調一下,但是yolov5的原生格式修改起來不直觀,這時候可以將yolov5格式的數據轉成labelme的json格式,這樣就方便對數據的標注進行微調,同時也不用花大心思去標注大數據,减少人工成本。
# -*- coding: utf-8 -*-
"""
Time: 2021.10.26
Author: Athrunsunny
Version: V 0.1
File: yolotolabelme.py
Describe: Functions in this file is change the dataset format to labelme json file
"""
import base64
import io
import os
import numpy as np
import json
from glob import glob
import cv2
import shutil
import yaml
from tqdm import tqdm
import PIL.Image
ROOT_DIR = os.getcwd()
VERSION = '4.5.7' # 根據labelme的版本來修改
def img_arr_to_b64(img_arr):
img_pil = PIL.Image.fromarray(img_arr)
f = io.BytesIO()
img_pil.save(f, format="PNG")
img_bin = f.getvalue()
if hasattr(base64, "encodebytes"):
img_b64 = base64.encodebytes(img_bin)
else:
img_b64 = base64.encodestring(img_bin)
return img_b64
def process_point(points, cls):
info = list()
for point in points:
shape_info = dict()
shape_info['label'] = cls[int(point[0])]
if point is None:
shape_info['points'] = [[], []]
else:
shape_info['points'] = [[point[1], point[2]],
[point[3], point[4]]]
shape_info['group_id'] = None
shape_info['shape_type'] = 'rectangle'
shape_info['flags'] = dict()
info.append(shape_info)
return info
def create_json(img, imagePath, filename, info):
data = dict()
data['version'] = VERSION
data['flags'] = dict()
data['shapes'] = info
data['imagePath'] = imagePath
height, width = img.shape[:2]
data['imageData'] = img_arr_to_b64(img).decode('utf-8')
data['imageHeight'] = height
data['imageWidth'] = width
jsondata = json.dumps(data, indent=4, separators=(',', ': '))
f = open(filename, 'w')
f.write(jsondata)
f.close()
def read_txt(path):
assert os.path.exists(path)
with open(path, mode='r', encoding="utf-8") as f:
content = f.readlines()
content = np.array(content)
res = []
for index, item in enumerate(content):
string = item.split(' ')
res.append(list(map(np.float64, string)))
return np.array(res)
def load_dataset_info(path=ROOT_DIR):
yamlpath = glob(path + "\\*.yaml")[0]
with open(yamlpath, "r", encoding="utf-8") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
return data
def reconvert_list(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[0] / dw
w = box[2] / dw
y = box[1] / dh
h = box[3] / dh
x1 = ((x + 1) * 2 - w) / 2.
y1 = ((y + 1) * 2 - h) / 2.
x2 = ((x + 1) * 2 + w) / 2.
y2 = ((y + 1) * 2 + h) / 2.
return x1, y1, x2, y2
def reconvert_np(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[:, :1] / dw
w = box[:, 2:3] / dw
y = box[:, 1:2] / dh
h = box[:, 3:4] / dh
box[:, :1] = ((x + 1) * 2 - w) / 2.
box[:, 2:3] = ((x + 1) * 2 + w) / 2.
box[:, 1:2] = ((y + 1) * 2 - h) / 2.
box[:, 3:4] = ((y + 1) * 2 + h) / 2.
return box
def txt2json(proctype, cls, path=ROOT_DIR):
process_image_path = os.path.join(path, proctype, 'images')
process_label_path = os.path.join(path, proctype, 'labels')
externs = ['png', 'jpg', 'JPEG', 'BMP', 'bmp']
imgfiles = list()
for extern in externs:
imgfiles.extend(glob(process_image_path + "\\*." + extern))
createfile = os.path.join(ROOT_DIR, 'createjson', proctype)
if not os.path.exists(createfile):
os.makedirs(createfile)
for image_path in tqdm(imgfiles):
frame = cv2.imread(image_path)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
height, width = frame.shape[:2]
size = (width, height)
imgfilename = image_path.replace("\\", "/").split("/")[-1]
imgname = '.'.join(imgfilename.split('.')[:-1])
jsonpath = os.path.join(createfile, imgname + '.json')
txtpath = os.path.join(process_label_path, imgname + '.txt')
label_and_point = read_txt(txtpath)
label_and_point[:, 1:] = reconvert_np(size, label_and_point[:, 1:])
info = process_point(label_and_point, cls)
create_json(frame, imgname, jsonpath, info)
shutil.copy(image_path, createfile)
def yolotolabelme(path=ROOT_DIR):
pathtype = list()
if 'train' in os.listdir(path):
pathtype.append('train')
if 'valid' in os.listdir(path):
pathtype.append('valid')
if 'test' in os.listdir(path):
pathtype.append('test')
cls = load_dataset_info()['names']
for file_type in pathtype:
print("Processing image type {} \n".format(file_type))
txt2json(file_type, cls)
if __name__ == "__main__":
yolotolabelme()
將以上代碼命名為yolotolabelme.py並存放在數據集的根目錄下

在運行程序前先將上面代碼中import的幾個庫安裝一下,之後運行

運行之後會在該路徑下生成createjson文件夾

轉換的數據會根據train或valid生成在createjson文件夾下,之後可通過labelme打開

由於我的test數據集是空的,所以轉換後也是空的,使用labelme打開該train路徑下的文件可以可以看到對應的標注

边栏推荐
- 【Camera专题】Camera dtsi 完全解析
- [data mining] task 4:20newsgroups clustering
- [North Asia data recovery] data recovery case of raid crash caused by hard disk disconnection during data synchronization of hot spare disk of RAID5 disk array
- 【數據挖掘】任務6:DBSCAN聚類
- 2022 spring "golden three silver four" job hopping prerequisites: Software Test interview questions (with answers)
- [shutter] animation animation (animatedwidget animation use process | create animation controller | create animation | create animatedwidget animation component | animation operation)
- 疫情當頭,作為Leader如何進行團隊的管理?| 社區征文
- 小程序开发的部分功能
- Take you ten days to easily complete the go micro service series (I)
- [camera special topic] Hal layer - brief analysis of addchannel and startchannel
猜你喜欢
![[fluent] hero animation (hero animation use process | create hero animation core components | create source page | create destination page | page Jump)](/img/68/65b8c0530cfdc92ba4f583b0162544.gif)
[fluent] hero animation (hero animation use process | create hero animation core components | create source page | create destination page | page Jump)

Performance test | script template sorting, tool sorting and result analysis

What are the differences between software testers with a monthly salary of 7K and 25K? Leaders look up to you when they master it

His experience in choosing a startup company or a big Internet company may give you some inspiration

Asian Games countdown! AI target detection helps host the Asian Games!

STM32 - Application of external interrupt induction lamp

【Camera专题】Camera dtsi 完全解析

Introduction to flask tutorial

【数据挖掘】任务4:20Newsgroups聚类

Smart management of Green Cities: Digital twin underground integrated pipe gallery platform
随机推荐
STM32 - Application of external interrupt induction lamp
[data mining] task 2: mimic-iii data processing of medical database
【数据挖掘】任务5:K-means/DBSCAN聚类:双层正方形
Scheme and practice of cold and hot separation of massive data
Everything file search tool
GDB 在嵌入式中的相关概念
网络安全-防火墙
Virtual list
自定义组件、使用npm包、全局数据共享、分包
【Camera专题】手把手撸一份驱动 到 点亮Camera
[technology development-23]: application of DSP in future converged networks
网络安全-钓鱼
Function definition and call, this, strict mode, higher-order function, closure, recursion
[leetcode] 797 and 1189 (basis of graph theory)
C application interface development foundation - form control (1) - form form
[camera special topic] Hal layer - brief analysis of addchannel and startchannel
Vant 实现简单的登录注册模块以及个人用户中心
Take you ten days to easily complete the go micro service series (II)
JUC thread scheduling
The technology boss is ready, and the topic of position C is up to you