当前位置:网站首页>f.grid_sample
f.grid_sample
2022-07-31 02:20:00 【love CV】
SPATIAL TRANSFORMER NETWORKS TUTORIAL
Author: Ghassen HAMROUNI
In this tutorial, you will learn how to augment your network using a visual attention mechanism called spatial transformer networks. You can read more about the spatial transformer networks in the DeepMind paper
Spatial transformer networks are a generalization of differentiable attention to any spatial transformation. Spatial transformer networks (STN for short) allow a neural network to learn how to perform spatial transformations on the input image in order to enhance the geometric invariance of the model. For example, it can crop a region of interest, scale and correct the orientation of an image. It can be a useful mechanism because CNNs are not invariant to rotation and scale and more general affine transformations.
grid_sample
,A sketch was drawn as an explanation.
- 图像尺寸归一化:First normalize the size of the image,(-1,-1)represents the original image(0,0)位置,(1,1)represents the original image(H-1,W-1)位置,这样一来,The positions of the feature points are also normalized to the corresponding positions.
- 构建grid:List the normalized feature points,constitutes a scale of 1*1*K*2的张量,其中K表示特征数量,2分别表示xy坐标.
- The feature point positions are denormalized:according to the input tensorH与W对grid(1,1,0,:)(represents the first feature point,The rest of the feature points are similar)进行反归一化,In fact, it is scaled proportionally+平移,Get the denormalized feature points in a tensor of a certainslice(通道)上的位置;But this location may not be a whole pixel,At this point, it needs to be filled with bilinear interpolation,然后其余sliceDo bilinear interpolation in the same way.注:What is actually in the code is bilinear interpolation,It is not the bicubic interpolation mentioned in the text;
- 输出维度:1*C*1*K.
One of the best things about STN is the ability to simply plug it into any existing CNN with very little modification.
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# get_ipython().run_line_magic('matplotlib', 'inline')
#
# Spatial Transformer Networks Tutorial
# =====================================
# **Author**: `Ghassen HAMROUNI <https://github.com/GHamrouni>`_
#
# .. figure:: /_static/img/stn/FSeq.png
#
# In this tutorial, you will learn how to augment your network using
# a visual attention mechanism called spatial transformer
# networks. You can read more about the spatial transformer
# networks in the `DeepMind paper <https://arxiv.org/abs/1506.02025>`__
#
# Spatial transformer networks are a generalization of differentiable
# attention to any spatial transformation. Spatial transformer networks
# (STN for short) allow a neural network to learn how to perform spatial
# transformations on the input image in order to enhance the geometric
# invariance of the model.
# For example, it can crop a region of interest, scale and correct
# the orientation of an image. It can be a useful mechanism because CNNs
# are not invariant to rotation and scale and more general affine
# transformations.
#
# One of the best things about STN is the ability to simply plug it into
# any existing CNN with very little modification.
#
# In[ ]:
# License: BSD
# Author: Ghassen Hamrouni
# from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # interactive mode
# Loading the data
# ----------------
#
# In this post we experiment with the classic MNIST dataset. Using a
# standard convolutional network augmented with a spatial transformer
# network.
#
#
# In[ ]:
from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Training dataset
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# Test dataset
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# Depicting spatial transformer networks
# --------------------------------------
#
# Spatial transformer networks boils down to three main components :
#
# - The localization network is a regular CNN which regresses the
# transformation parameters. The transformation is never learned
# explicitly from this dataset, instead the network learns automatically
# the spatial transformations that enhances the global accuracy.
# - The grid generator generates a grid of coordinates in the input
# image corresponding to each pixel from the output image.
# - The sampler uses the parameters of the transformation and applies
# it to the input image.
#
# .. figure:: /_static/img/stn/stn-arch.png
#
# .. Note::
# We need the latest version of PyTorch that contains
# affine_grid and grid_sample modules.
#
#
#
# In[ ]:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# Spatial transformer localization-network
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform the usual forward pass
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
# Training the model
# ------------------
#
# Now, let's use the SGD algorithm to train the model. The network is
# learning the classification task in a supervised way. In the same time
# the model is learning STN automatically in an end-to-end fashion.
#
#
# In[ ]:
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# A simple test procedure to measure the STN performances on MNIST.
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get the index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# Visualizing the STN results
# ---------------------------
#
# Now, we will inspect the results of our learned visual attention
# mechanism.
#
# We define a small helper function in order to visualize the
# transformations while training.
#
#
# In[ ]:
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# We want to visualize the output of the spatial transformers layer
# after the training, we visualize a batch of input images and
# the corresponding transformed batch using STN.
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# Visualize the STN transformation on some input batch
visualize_stn()
plt.ioff()
plt.show()
pytorch的grid_sampleReturns an incorrect value - 问答 - 腾讯云开发者社区-腾讯云 (tencent.com)
There are forward mappings in the neural network framework/Is warpage realized?
A deep learning featureSuperPoint
How to use optical flow and grid_sample对图像进行扭曲?
Convolutional network solves affine transformation parameters
边栏推荐
- Basic introduction to ShardingJDBC
- STM32CUBEMX develops GD32F303 (11) ---- ADC scans multiple channels in DMA mode
- AI在医疗影像设备全流程应用
- Drools规则属性,高级语法
- [1154]如何将字符串转换为datetime
- mysql 视图
- Static route analysis (the longest mask matching principle + active and standby routes)
- 934. 最短的桥
- 934. The Shortest Bridge
- Linux下redis7的安装,启动与停止
猜你喜欢
LeetCode 1161 The largest element in the layer and the LeetCode road of [BFS binary tree] HERODING
Shell script to loop through values in log file to sum and calculate average, max and min
CV-Model【3】:MobileNet v2
用户交互+格式化输出
934. 最短的桥
How to design the changing system requirements
12 pictures take you to fully understand service current limit, circuit breaker, downgrade, and avalanche
String为什么不可变?
Drools Rule Properties, Advanced Syntax
Arbitrum 专访 | L2 Summer, 脱颖而出的 Arbitrum 为开发者带来了什么?
随机推荐
用户交互+格式化输出
曼城推出可检测情绪的智能围巾,把球迷给整迷惑了
Software testing basic interface testing - getting started with Jmeter, you should pay attention to these things
MySQL installation tutorial (detailed, package teaching package~)
Teach you how to configure Jenkins automated email notifications
【AcWing 62nd Weekly Game】
leetcode-399: division evaluation
Intranet Infiltration - Privilege Escalation
CMOS和TTL的区别?
leetcode-952: Calculate max component size by common factor
19.支持向量机-优化目标和大间距直观理解
Simple confession page
Shell script to loop through values in log file to sum and calculate average, max and min
Drools basic introduction, introductory case, basic syntax
[1154]如何将字符串转换为datetime
[1153] The boundary range of between in mysql
修改未正确放入沙盒造成苹果兼容性问题
Force buckled brush the stairs (7/30)
Live Preview | KDD2022 Doctoral Dissertation Award Champion and Runner-up Dialogue
Calculate S=a+aa+…+aa…a