当前位置:网站首页>Li Mu hands-on learning deep learning V2-BERT fine-tuning and code implementation

Li Mu hands-on learning deep learning V2-BERT fine-tuning and code implementation

2022-08-03 20:11:00 cv_lhp

一.BERT微调

1.介绍

Natural language level of inference is a sequence of text categorization problem,而微调BERTOnly need one additional based on multilayer perceptron architecture for pre trainedBERTWeighting parameters fine-tuning,如下图所示.Below will download a small version of the pre trainedBERT,然后对其进行微调,以便在SNLIData set on natural language infer.
BERT微调

2.加载预训练的BERT

在前面博客BERT预训练第二篇:李沐动手学深度学习V2-bert预训练数据集和代码实现BERT预训练第三篇:李沐动手学深度学习V2-BERT预训练和代码实现This paper introduces the preliminary training ofBERT(注意原始的BERT模型是在更大的语料库上预训练的,原始的BERTModels have hundreds of millions of parameter).In the following offers two versions of pre trainingBERT:“bert.base”与原始的BERT基础模型一样大,需要大量的计算资源才能进行微调,而“bert.small”是一个小版本,以便于演示.

import os
import torch
from torch import nn
import d2l.torch
import json
import multiprocessing
d2l.torch.DATA_HUB['bert.base'] = (d2l.torch.DATA_URL + 'bert.base.torch.zip',
                             '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.torch.DATA_HUB['bert.small'] = (d2l.torch.DATA_URL + 'bert.small.torch.zip',
                              'c72329e68a732bef0452e4b96a1c341c8910f81f')

两个预训练好的BERT模型都包含一个定义词表的“vocab.json”File and a preliminary trainingBERT参数的“pretrained.params”文件,load_pretrained_modelFunction is used to load previously trainedBERT参数.

def load_pretrained_model(pretrained_model,num_hiddens,ffn_num_hiddens,num_heads,num_layers,dropout,max_len,devices):
    data_dir = d2l.torch.download_extract(pretrained_model)
    # 定义空词表以加载预定义词表
    vocab = d2l.torch.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir,'vocab.json')))
    vocab.token_to_idx = {
    token:idx for idx,token in enumerate(vocab.idx_to_token)}
    bert = d2l.torch.BERTModel(len(vocab),num_hiddens=num_hiddens,norm_shape=[256],ffn_num_input=256,ffn_num_hiddens=ffn_num_hiddens,num_heads=num_heads,num_layers=num_layers,dropout=dropout,max_len=max_len,key_size=256,query_size=256,value_size=256,hid_in_features=256,mlm_in_features=256,nsp_in_features=256)
    # bert = nn.DataParallel(bert,device_ids=devices).to(devices[0])
    # bert.module.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')),strict=False)
    # 加载预训练BERT参数
    bert.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')))
    return bert,vocab

In order to facilitate in most machine demo,The following loading and fine-tuning after preliminary trainingBERT的小版本(“bert.mall”).

devices = d2l.torch.try_all_gpus()[2:4]
bert,vocab = load_pretrained_model('bert.small',num_hiddens=256,ffn_num_hiddens=512,num_heads=4,num_layers=2,dropout=0.1,max_len=512,devices=devices)

3. 微调BERT的数据集

对于SNLI数据集的下游任务自然语言推断,定义一个定制的数据集类SNLIBERTDataset.在每个样本中,前提和假设形成一对文本序列,并被打包成一个BERT输入序列,片段索引用于区分BERT输入序列中的前提和假设.利用预定义的BERT输入序列的最大长度(max_len),持续移除输入文本对中较长文本的最后一个标记,直到满足max_len.为了加速生成用于微调BERT的SNLI数据集,使用4个工作进程并行生成训练或测试样本.

class SNLIBERTDataset(torch.utils.data.Dataset):
    def __init__(self,dataset,max_len,vocab=None):
        all_premises_hypotheses_tokens = [[p_tokens,h_tokens] for p_tokens,h_tokens in zip(*[d2l.torch.tokenize([s.lower() for s in sentences]) for sentences in dataset[:2]])]
        self.vocab = vocab
        self.max_len = max_len
        self.labels = torch.tensor(dataset[2])
        self.all_tokens_id,self.all_segments,self.all_valid_lens = self._preprocess(all_premises_hypotheses_tokens)
        print(f'read {len(self.all_tokens_id)} examples')
    def _preprocess(self,all_premises_hypotheses_tokens):
        pool = multiprocessing.Pool(4)# 使用4个进程
        out = pool.map(self._mp_worker,all_premises_hypotheses_tokens)
        all_tokens_id = [tokens_id for tokens_id,segments,valid_len in out]
        all_segments = [segments for tokens_id,segments,valid_len in out]
        all_valid_lens = [valid_len for tokens_id,segments,valid_len in out]
        return torch.tensor(all_tokens_id,dtype=torch.long),torch.tensor(all_segments,dtype=torch.long),torch.tensor(all_valid_lens)
    def _mp_worker(self,premises_hypotheses_tokens):
        p_tokens,h_tokens = premises_hypotheses_tokens
        self._truncate_pair_of_tokens(p_tokens,h_tokens)
        tokens,segments = d2l.torch.get_tokens_and_segments(p_tokens,h_tokens)
        valid_len = len(tokens)
        tokens_id = self.vocab[tokens]+[self.vocab['<pad>']]*(self.max_len-valid_len)
        segments = segments+[0]*(self.max_len-valid_len)
        return (tokens_id,segments,valid_len)
    def _truncate_pair_of_tokens(self,p_tokens,h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while (len(p_tokens)+len(h_tokens))>self.max_len-3:
            if len(p_tokens)>len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()
    def __getitem__(self, idx):
        return (self.all_tokens_id[idx],self.all_segments[idx],self.all_valid_lens[idx]),self.labels[idx]
    def __len__(self):
        return len(self.all_tokens_id)

下载完SNLI数据集后,通过实例化SNLIBERTDataset类来生成训练和测试样本,这些样本将在自然语言推断的训练和测试期间进行小批量读取.

#在原始的BERT模型中,max_len=512
batch_size,max_len,num_workers = 512,128,d2l.torch.get_dataloader_workers()
data_dir = d2l.torch.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir,is_train=True),max_len,vocab)
test_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir,is_train=False),max_len,vocab)
train_iter = torch.utils.data.DataLoader(train_set,batch_size,num_workers=num_workers,shuffle=True)
test_iter = torch.utils.data.DataLoader(test_set,batch_size,num_workers=num_workers,shuffle=False)

4. BERT微调

**用于自然语言推断的微调BERT只需要一个额外的多层感知机,该多层感知机由两个全连接层组成,**与前面BERT实现的博客BERT预训练第一篇:李沐动手学深度学习V2-bert和代码实现中BERTClassifier类中进行nsp预测的self.hidden和self.outputThe multi-layer perceptron structure a.这个多层感知机将特殊的“”词元的BERT表示进行了转换,该词元同时编码前提和假设的信息,After a multilayer perceptron from natural language infer that the output of the classification feature d:蕴涵、矛盾和中性.

class BERTClassifier(nn.Module):
    def __init__(self,bert):
        super(BERTClassifier,self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Linear(256,3)
    def forward(self,inputs):
        tokens_X,segments_X,valid_lens_X = inputs
        encoded_X = self.encoder(tokens_X,segments_X,valid_lens_X)
        return self.output(self.hidden(encoded_X[:,0,:]))

The following will advance trainingBERT模型bertWas sent to used in the downstream applicationBERTClassifier实例net中.在BERTIn the common implementation of fine-tuning,Only additional multilayer perceptron(net.output)The parameters of the output layer will start from scratch to learn.预训练BERT编码器(net.encoder)和额外的多层感知机的隐藏层(net.hidden)All the parameters will be fine-tuning.

net = BERTClassifier(bert)

在BERT预训练中MaskLM类和NextSentencePred类在其使用的多层感知机中都有一些参数,这些参数是预训练BERT模型bertPart of the parameters in the,However, these parameters are used to calculate preliminary training under shading language model in the process of loss and forecast a loss.这两个损失函数与微调下游应用无关,因此当BERT微调时,MaskLM和NextSentencePred中采用的多层感知机的参数不会更新(陈旧的,staled).
通过d2l.train_batch_ch13()函数使用SNLI的训练集(train_iter)和测试集(test_iter)对net模型进行训练和评估,结果如下图所示.

lr,num_epochs = 1e-4,5
optim = torch.optim.Adam(params=net.parameters(),lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
d2l.torch.train_ch13(net,train_iter,test_iter,loss,optim,num_epochs,devices)

BERTFine-tuning training and test results

5. 小结

  • In view of the downstream application for pre trainingBERT模型进行微调,例如在SNLIData set on natural language infer.
  • 在微调过程中,BERTModel become a part of the downstream application model,Combined with multilayer perceptron to downstream application model training and assessment of the task.

6. 使用原始BERT的预训练模型进行微调

Fine-tuning a greater advance trainingBERT模型,该模型与原始的BERT基础模型一样大.修改load_pretrained_model函数中的参数设置:将“bert.mall”替换为“bert.base”,将num_hiddens=256、ffn_num_hiddens=512、num_heads=4和num_layers=2的值分别增加到768、3072、12和12,At the same time, modify the multilayer perceptron output layerLinear层为(nn.Linear(768,3),Because now, afterBERTModel output characteristic dimension into768),Increase the fine-tuning iterative round number,代码如下所示.

import os
import torch
from torch import nn
import d2l.torch
import json
import multiprocessing

d2l.torch.DATA_HUB['bert.base'] = (d2l.torch.DATA_URL + 'bert.base.torch.zip',
                                   '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.torch.DATA_HUB['bert.small'] = (d2l.torch.DATA_URL + 'bert.small.torch.zip',
                                    'c72329e68a732bef0452e4b96a1c341c8910f81f')



devices = d2l.torch.try_all_gpus()
def load_pretrained_model1(pretrained_model,num_hiddens,ffn_num_hiddens,num_heads,num_layers,dropout,max_len,devices):
    data_dir = d2l.torch.download_extract(pretrained_model)
    vocab = d2l.torch.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir,'vocab.json')))
    vocab.token_to_idx = {
    token:idx for idx,token in enumerate(vocab.idx_to_token)}
    bert = d2l.torch.BERTModel(len(vocab),num_hiddens=num_hiddens,norm_shape=[768],ffn_num_input=768,ffn_num_hiddens=ffn_num_hiddens,num_heads=num_heads,num_layers=num_layers,dropout=dropout,max_len=max_len,key_size=768,query_size=768,value_size=768,hid_in_features=768,mlm_in_features=768,nsp_in_features=768)
    # bert = nn.DataParallel(bert,device_ids=devices).to(devices[0])
    # bert.module.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')),strict=False)

    bert.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')))
    return bert,vocab

bert,vocab = load_pretrained_model1('bert.base',num_hiddens=768,ffn_num_hiddens=3072,num_heads=12,num_layers=12,dropout=0.1,max_len=512,devices=devices)
class SNLIBERTDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, max_len, vocab=None):
        all_premises_hypotheses_tokens = [[p_tokens, h_tokens] for p_tokens, h_tokens in
                                          zip(*[d2l.torch.tokenize([s.lower() for s in sentences]) for sentences in
                                                dataset[:2]])]
        self.vocab = vocab
        self.max_len = max_len
        self.labels = torch.tensor(dataset[2])
        self.all_tokens_id, self.all_segments, self.all_valid_lens = self._preprocess(all_premises_hypotheses_tokens)
        print(f'read {len(self.all_tokens_id)} examples')

    def _preprocess(self, all_premises_hypotheses_tokens):
        pool = multiprocessing.Pool(4)  # 使用4个进程
        out = pool.map(self._mp_worker, all_premises_hypotheses_tokens)
        all_tokens_id = [tokens_id for tokens_id, segments, valid_len in out]
        all_segments = [segments for tokens_id, segments, valid_len in out]
        all_valid_lens = [valid_len for tokens_id, segments, valid_len in out]
        return torch.tensor(all_tokens_id, dtype=torch.long), torch.tensor(all_segments,
                                                                           dtype=torch.long), torch.tensor(
            all_valid_lens)

    def _mp_worker(self, premises_hypotheses_tokens):
        p_tokens, h_tokens = premises_hypotheses_tokens
        self._truncate_pair_of_tokens(p_tokens, h_tokens)
        tokens, segments = d2l.torch.get_tokens_and_segments(p_tokens, h_tokens)
        valid_len = len(tokens)
        tokens_id = self.vocab[tokens] + [self.vocab['<pad>']] * (self.max_len - valid_len)
        segments = segments + [0] * (self.max_len - valid_len)
        return (tokens_id, segments, valid_len)

    def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while (len(p_tokens) + len(h_tokens)) > self.max_len - 3:
            if len(p_tokens) > len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()

    def __getitem__(self, idx):
        return (self.all_tokens_id[idx], self.all_segments[idx], self.all_valid_lens[idx]), self.labels[idx]

    def __len__(self):
        return len(self.all_tokens_id)


#在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.torch.get_dataloader_workers()
data_dir = d2l.torch.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir, is_train=True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir, is_train=False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, num_workers=num_workers, shuffle=True)
test_iter = torch.utils.data.DataLoader(test_set, batch_size, num_workers=num_workers, shuffle=False)


class BERTClassifier(nn.Module):
    def __init__(self, bert):
        super(BERTClassifier, self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Linear(768, 3)

    def forward(self, inputs):
        tokens_X, segments_X, valid_lens_X = inputs
        encoded_X = self.encoder(tokens_X, segments_X, valid_lens_X)
        return self.output(self.hidden(encoded_X[:, 0, :]))


net = BERTClassifier(bert)
lr, num_epochs = 1e-4, 20
optim = torch.optim.Adam(params=net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
d2l.torch.train_ch13(net, train_iter, test_iter, loss, optim, num_epochs, devices)

7. 全部代码

import os
import torch
from torch import nn
import d2l.torch
import json
import multiprocessing

d2l.torch.DATA_HUB['bert.base'] = (d2l.torch.DATA_URL + 'bert.base.torch.zip',
                                   '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.torch.DATA_HUB['bert.small'] = (d2l.torch.DATA_URL + 'bert.small.torch.zip',
                                    'c72329e68a732bef0452e4b96a1c341c8910f81f')


def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens, num_heads, num_layers, dropout, max_len,
                          devices):
    data_dir = d2l.torch.download_extract(pretrained_model)
    # 定义空词表以加载预定义词表
    vocab = d2l.torch.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir, 'vocab.json')))
    vocab.token_to_idx = {
    token: idx for idx, token in enumerate(vocab.idx_to_token)}
    bert = d2l.torch.BERTModel(len(vocab), num_hiddens=num_hiddens, norm_shape=[256], ffn_num_input=256,
                               ffn_num_hiddens=ffn_num_hiddens, num_heads=num_heads, num_layers=num_layers,
                               dropout=dropout, max_len=max_len, key_size=256, query_size=256, value_size=256,
                               hid_in_features=256, mlm_in_features=256, nsp_in_features=256)
    # bert = nn.DataParallel(bert,device_ids=devices).to(devices[0])
    # bert.module.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')),strict=False)
    # 加载预训练BERT参数
    bert.load_state_dict(torch.load(os.path.join(data_dir, 'pretrained.params')))
    return bert, vocab


devices = d2l.torch.try_all_gpus()[2:4]
bert, vocab = load_pretrained_model('bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4, num_layers=2,
                                    dropout=0.1, max_len=512, devices=devices)


class SNLIBERTDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, max_len, vocab=None):
        all_premises_hypotheses_tokens = [[p_tokens, h_tokens] for p_tokens, h_tokens in
                                          zip(*[d2l.torch.tokenize([s.lower() for s in sentences]) for sentences in
                                                dataset[:2]])]
        self.vocab = vocab
        self.max_len = max_len
        self.labels = torch.tensor(dataset[2])
        self.all_tokens_id, self.all_segments, self.all_valid_lens = self._preprocess(all_premises_hypotheses_tokens)
        print(f'read {len(self.all_tokens_id)} examples')

    def _preprocess(self, all_premises_hypotheses_tokens):
        pool = multiprocessing.Pool(4)  # 使用4个进程
        out = pool.map(self._mp_worker, all_premises_hypotheses_tokens)
        all_tokens_id = [tokens_id for tokens_id, segments, valid_len in out]
        all_segments = [segments for tokens_id, segments, valid_len in out]
        all_valid_lens = [valid_len for tokens_id, segments, valid_len in out]
        return torch.tensor(all_tokens_id, dtype=torch.long), torch.tensor(all_segments,
                                                                           dtype=torch.long), torch.tensor(
            all_valid_lens)

    def _mp_worker(self, premises_hypotheses_tokens):
        p_tokens, h_tokens = premises_hypotheses_tokens
        self._truncate_pair_of_tokens(p_tokens, h_tokens)
        tokens, segments = d2l.torch.get_tokens_and_segments(p_tokens, h_tokens)
        valid_len = len(tokens)
        tokens_id = self.vocab[tokens] + [self.vocab['<pad>']] * (self.max_len - valid_len)
        segments = segments + [0] * (self.max_len - valid_len)
        return (tokens_id, segments, valid_len)

    def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while (len(p_tokens) + len(h_tokens)) > self.max_len - 3:
            if len(p_tokens) > len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()

    def __getitem__(self, idx):
        return (self.all_tokens_id[idx], self.all_segments[idx], self.all_valid_lens[idx]), self.labels[idx]

    def __len__(self):
        return len(self.all_tokens_id)


#在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.torch.get_dataloader_workers()
data_dir = d2l.torch.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir, is_train=True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.torch.read_snli(data_dir, is_train=False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, num_workers=num_workers, shuffle=True)
test_iter = torch.utils.data.DataLoader(test_set, batch_size, num_workers=num_workers, shuffle=False)


class BERTClassifier(nn.Module):
    def __init__(self, bert):
        super(BERTClassifier, self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Linear(256, 3)

    def forward(self, inputs):
        tokens_X, segments_X, valid_lens_X = inputs
        encoded_X = self.encoder(tokens_X, segments_X, valid_lens_X)
        return self.output(self.hidden(encoded_X[:, 0, :]))


net = BERTClassifier(bert)
lr, num_epochs = 1e-4, 5
optim = torch.optim.Adam(params=net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction='none')
d2l.torch.train_ch13(net, train_iter, test_iter, loss, optim, num_epochs, devices)

8. 相关链接

BERT预训练第一篇:李沐动手学深度学习V2-bert和代码实现
BERT预训练第二篇:李沐动手学深度学习V2-bert预训练数据集和代码实现
BERT预训练第三篇:李沐动手学深度学习V2-BERT预训练和代码实现
BERTFine-tune the first:李沐动手学深度学习V2-自然语言推断与数据集SNLI和代码实现
BERTThe second fine-tuning:李沐动手学深度学习V2-BERTFine-tuning and code implementation

原网站

版权声明
本文为[cv_lhp]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/215/202208032005393276.html