当前位置:网站首页>Test your trained model
Test your trained model
2022-07-03 17:09:00 【Carina2333333】
Paste the code and corresponding output of Runtong first
# -*- coding: utf-8 -*-
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
import cv2
import time
from mrcnn.config import Config
from datetime import datetime
# Root directory of the project
ROOT_DIR = os.path.abspath("C:\\Users\\91078\\Desktop\\Mask_RCNN\\Mask_RCNN-master")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
# sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version
# from samples.coco import coco
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
print(MODEL_DIR)
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0001.h5")
# !!! Be careful .h5 Path to file
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
print("cuiwei***********************")
# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
class ShapesConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "shapes"
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 3 # background + 3 shapes
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 480
IMAGE_MAX_DIM = 640
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE =100
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 100
# use small validation steps since the epoch is small
VALIDATION_STEPS = 50
#import train_tongue
#class InferenceConfig(coco.CocoConfig):
class InferenceConfig(ShapesConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Load weights trained on MS-COCO
# model.load_weights(COCO_MODEL_PATH, by_name=True)
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])
# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'ball', 'triangle', 'rectangle']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
a=datetime.now()
# Run detection
results = model.detect([image], verbose=1)
b=datetime.now()
# Visualize results
print("shijian",(b-a).seconds)
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
Output :


ERROR
ERROR1:
ValueError: Layer #389 (named "mrcnn_bbox_fc"), weight <tf.Variable 'mrcnn_bbox_fc/kernel:0' shape=(1024, 8) dtype=float32_ref> has shape (1024, 8), but the saved weight has shape (1024, 324).
hold model.load_weights(COCO_MODEL_PATH, by_name=True) Change it to :
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])Reference article :
ERROR2:
OSError: Unable to open file (truncated file: eof = 22118400, sblock->base_addr = 0, stored_eof = 152662144)
Incomplete will be downloaded .h5 File deletion
Reference article :
边栏推荐
- RedHat 6.2 configuring ZABBIX
- 新库上线 | CnOpenData中国观鸟记录数据
- Apache service suspended asynchronous acceptex failed
- 简单配置PostFix服务器
- Informatics Olympiad all in one YBT 1175: divide by 13 | openjudge noi 1.13 27: divide by 13
- Simple configuration of postfix server
- The largest matrix (H) in a brush 143 monotone stack 84 histogram
- C语言字符串练习
- Life is still confused? Maybe these subscription numbers have the answers you need!
- MySQL Basics
猜你喜欢

Life is still confused? Maybe these subscription numbers have the answers you need!

MySQL Basics

大变局!全国房价,跌破万元大关

Take you to API development by hand

Static program analysis (I) -- Outline mind map and content introduction

Unity notes unityxr simple to use

CC2530 common registers for crystal oscillator settings

C语言按行修改文件

【RT-Thread】nxp rt10xx 设备驱动框架之--rtc搭建和使用

图之深度优先搜索
随机推荐
[2. Basics of Delphi grammar] 1 Identifiers and reserved words
Assembly instance analysis -- screen display in real mode
Kotlin learning quick start (7) -- wonderful use of expansion
在iptables防火墙下开启vsftpd的端口
[combinatorics] recursive equation (example of solving recursive equation without multiple roots | complete process of solving recursive equation without multiple roots)
How do large consumer enterprises make digital transformation?
function overloading
HP 阵列卡排障一例
LeetCode13.罗马数字转整数(三种解法)
Deep understanding of grouping sets statements in SQL
Kotlin learning quick start (7) -- wonderful use of expansion
Atom QT 16_ audiorecorder
Analysis of variance summary
CC2530 common registers for crystal oscillator settings
One brush 144 force deduction hot question-1 sum of two numbers (E)
线程池:业务代码最常用也最容易犯错的组件
kubernetes资源对象介绍及常用命令(五)-(NFS&PV&PVC)
Necessary ability of data analysis
Mysql database -dql
Answer to the homework assessment of advanced English reading (II) of the course examination of Fuzhou Normal University in February 2022
https://blog.csdn.net/qq_34713831/article/details/85797622