当前位置:网站首页>Test your trained model
Test your trained model
2022-07-03 17:09:00 【Carina2333333】
Paste the code and corresponding output of Runtong first
# -*- coding: utf-8 -*-
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
import cv2
import time
from mrcnn.config import Config
from datetime import datetime
# Root directory of the project
ROOT_DIR = os.path.abspath("C:\\Users\\91078\\Desktop\\Mask_RCNN\\Mask_RCNN-master")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
# sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version
# from samples.coco import coco
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
print(MODEL_DIR)
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0001.h5")
# !!! Be careful .h5 Path to file
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
print("cuiwei***********************")
# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
class ShapesConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "shapes"
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 3 # background + 3 shapes
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 480
IMAGE_MAX_DIM = 640
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE =100
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 100
# use small validation steps since the epoch is small
VALIDATION_STEPS = 50
#import train_tongue
#class InferenceConfig(coco.CocoConfig):
class InferenceConfig(ShapesConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Load weights trained on MS-COCO
# model.load_weights(COCO_MODEL_PATH, by_name=True)
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])
# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'ball', 'triangle', 'rectangle']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
a=datetime.now()
# Run detection
results = model.detect([image], verbose=1)
b=datetime.now()
# Visualize results
print("shijian",(b-a).seconds)
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
Output :


ERROR
ERROR1:
ValueError: Layer #389 (named "mrcnn_bbox_fc"), weight <tf.Variable 'mrcnn_bbox_fc/kernel:0' shape=(1024, 8) dtype=float32_ref> has shape (1024, 8), but the saved weight has shape (1024, 324).
hold model.load_weights(COCO_MODEL_PATH, by_name=True) Change it to :
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])Reference article :
ERROR2:
OSError: Unable to open file (truncated file: eof = 22118400, sblock->base_addr = 0, stored_eof = 152662144)
Incomplete will be downloaded .h5 File deletion
Reference article :
边栏推荐
- 网络安全web渗透技术
- C language modifies files by line
- [combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
- 27. 输入3个整数,按从大到小的次序输出。要求用指针方法实现。
- Apache服务挂起Asynchronous AcceptEx failed.
- [combinatorics] recursive equation (general solution structure of recursive equation with multiple roots | linear independent solution | general solution with multiple roots | solution example of recu
- The largest matrix (H) in a brush 143 monotone stack 84 histogram
- BYD and great wall hybrid market "get together" again
- Svn full backup svnadmin hotcopy
- 建立自己的网站(23)
猜你喜欢

CC2530 common registers for ADC single channel conversion

【RT-Thread】nxp rt10xx 设备驱动框架之--rtc搭建和使用

C language modifies files by line

Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires

Mysql database DDL and DML

Free data | new library online | cnopendata complete data of China's insurance intermediary outlets

图之深度优先搜索

One brush 145 force deduction hot question-2 sum of two numbers (m)

【Try to Hack】主动侦查隐藏技术

Build your own website (23)
随机推荐
Free data | new library online | cnopendata complete data of China's insurance intermediary outlets
Analysis of variance summary
One brush 145 force deduction hot question-2 sum of two numbers (m)
[combinatorial mathematics] recursive equation (example of recursive equation 2 Hanoi Tower | example of recursive equation 3 insertion sequencing)
MySQL Basics
[error reporting] omp: error 15: initializing libiomp5md dll, but found libiomp5md. dll already initialized.
Assignment examination questions of advanced English (III) for the course examination of Fujian Normal University in February 2022
RF Analyze Demo搭建 Step by Step
Necessary ability of data analysis
SVN完全备份svnadmin hotcopy
Installation and configuration of network hard disk NFS
ucore概述
Talk about several methods of interface optimization
[try to hack] active detection and concealment technology
Great changes! National housing prices fell below the 10000 yuan mark
MySQL user management
Execute script unrecognized \r
Examination questions for the assignment of selected readings of British and American Literature in the course examination of Fujian Normal University in February 2022
Simple use of unity pen XR grab
Static program analysis (I) -- Outline mind map and content introduction
https://blog.csdn.net/qq_34713831/article/details/85797622