当前位置:网站首页>Test your trained model
Test your trained model
2022-07-03 17:09:00 【Carina2333333】
Paste the code and corresponding output of Runtong first
# -*- coding: utf-8 -*-
import os
import sys
import random
import math
import numpy as np
import skimage.io
import matplotlib
import matplotlib.pyplot as plt
import cv2
import time
from mrcnn.config import Config
from datetime import datetime
# Root directory of the project
ROOT_DIR = os.path.abspath("C:\\Users\\91078\\Desktop\\Mask_RCNN\\Mask_RCNN-master")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Import COCO config
# sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version
# from samples.coco import coco
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")
print(MODEL_DIR)
# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0001.h5")
# !!! Be careful .h5 Path to file
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
utils.download_trained_weights(COCO_MODEL_PATH)
print("cuiwei***********************")
# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")
class ShapesConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "shapes"
# Train on 1 GPU and 8 images per GPU. We can put multiple images on each
# GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 3 # background + 3 shapes
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_MIN_DIM = 480
IMAGE_MAX_DIM = 640
# Use smaller anchors because our image and objects are small
RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE =100
# Use a small epoch since the data is simple
STEPS_PER_EPOCH = 100
# use small validation steps since the epoch is small
VALIDATION_STEPS = 50
#import train_tongue
#class InferenceConfig(coco.CocoConfig):
class InferenceConfig(ShapesConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Load weights trained on MS-COCO
# model.load_weights(COCO_MODEL_PATH, by_name=True)
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])
# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'ball', 'triangle', 'rectangle']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
a=datetime.now()
# Run detection
results = model.detect([image], verbose=1)
b=datetime.now()
# Visualize results
print("shijian",(b-a).seconds)
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
class_names, r['scores'])
Output :
ERROR
ERROR1:
ValueError: Layer #389 (named "mrcnn_bbox_fc"), weight <tf.Variable 'mrcnn_bbox_fc/kernel:0' shape=(1024, 8) dtype=float32_ref> has shape (1024, 8), but the saved weight has shape (1024, 324).
hold model.load_weights(COCO_MODEL_PATH, by_name=True) Change it to :
model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"])
Reference article :
ERROR2:
OSError: Unable to open file (truncated file: eof = 22118400, sblock->base_addr = 0, stored_eof = 152662144)
Incomplete will be downloaded .h5 File deletion
Reference article :
边栏推荐
- Recommendation of good books on learning QT programming
- [combinatorics] recursive equation (outline of recursive equation content | definition of recursive equation | example description of recursive equation | Fibonacci Series)
- LeetCode13.罗马数字转整数(三种解法)
- 网络硬盘NFS的安装与配置
- 免费数据 | 新库上线 | CnOpenData中国保险中介机构网点全集数据
- CC2530 common registers for crystal oscillator settings
- [combinatorics] recursive equation (constant coefficient linear homogeneous recursive equation | constant coefficient, linear, homogeneous concept description | constant coefficient linear homogeneous
- 浅谈拉格朗日插值及其应用
- 定义一个结构体Fraction,表示分数,用于表示 2/3, 5/6这样的分数
- The most complete postman interface test tutorial in the whole network, API interface test
猜你喜欢
[error reporting] omp: error 15: initializing libiomp5md dll, but found libiomp5md. dll already initialized.
Depth first search of graph
New library online | cnopendata complete data of Chinese insurance institution outlets
【RT-Thread】nxp rt10xx 设备驱动框架之--hwtimer搭建和使用
建立自己的网站(23)
Life is still confused? Maybe these subscription numbers have the answers you need!
【RT-Thread】nxp rt10xx 设备驱动框架之--Pin搭建和使用
Atom QT 16_ audiorecorder
Redis:关于列表List类型数据的操作命令
ucore概述
随机推荐
汇编实例解析--实模式下屏幕显示
新库上线 | CnOpenData中国保险机构网点全集数据
New features of C 10
The way of wisdom (unity of knowledge and action)
智慧之道(知行合一)
Free data | new library online | cnopendata complete data of China's insurance intermediary outlets
PHP production website active push (website)
Why is WPA3 security of enterprise business so important?
visual studio “通常每个套接字地址(协议/网络地址/端口)只允许使用一次“
[error reporting] omp: error 15: initializing libiomp5md dll, but found libiomp5md. dll already initialized.
Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires
LeetCode 1658. Minimum operand to reduce x to 0
線程池:業務代碼最常用也最容易犯錯的組件
Analysis of variance summary
【RT-Thread】nxp rt10xx 设备驱动框架之--rtc搭建和使用
Installation and configuration of network hard disk NFS
Host based intrusion system IDS
Redis:关于列表List类型数据的操作命令
Leetcode: lucky number in matrix
New library online | cnopendata complete data of Chinese insurance institution outlets