当前位置:网站首页>[set theory] set operation (Union | intersection | disjoint | relative complement | symmetric difference | absolute complement | generalized union | generalized intersection | set operation priority)
[set theory] set operation (Union | intersection | disjoint | relative complement | symmetric difference | absolute complement | generalized union | generalized intersection | set operation priority)
2022-07-03 04:09:00 【Programmer community】
List of articles
- One 、 Combine
- Two 、 Union example
- 3、 ... and 、 intersection
- Four 、 Example of intersection
- 5、 ... and 、 Disjoint
- 6、 ... and 、 Relative complement
- 7、 ... and 、 Symmetry difference
- 8、 ... and 、 Absolute complement
- Nine 、 Generalized Union
- Ten 、 Generalized intersection
- 11、 ... and 、 Set operation priority
One 、 Combine
Combine :
A
,
B
A, B
A,B It's two sets , from
A
A
A and
B
B
B A collection of all elements , be called
A
A
A And
B
B
B Union ;
Remember to do :
A
∪
B
A \cup B
A∪B ,
∪
\cup
∪ be called Union operator ;
Symbolize :
A
∪
B
=
{
x
∣
x
∈
A
∨
x
∈
B
}
A \cup B = \{ x | x \in A \lor x \in B \}
A∪B={ x∣x∈A∨x∈B}
Primary union : The union of two sets , It can be extended to A limited number / Countable The union of sets , be called Primary union ;
A
1
,
A
2
,
⋯
,
A
n
A_1 , A_2 , \cdots , A_n
A1,A2,⋯,An yes
n
n
n A collection of , be
A
1
∪
A
2
∪
⋯
∪
A
n
=
{
x
∣
∃
i
(
1
≤
i
≤
n
∨
x
∈
A
i
)
}
A_1 \cup A_2 \cup \cdots \cup A_n = \{ x | \exist i ( 1 \leq i \leq n \ \lor \ x \in A_i ) \}
A1∪A2∪⋯∪An={ x∣∃i(1≤i≤n ∨ x∈Ai)} , Write it down as
⋃
i
=
1
n
A
i
=
A
1
∪
A
2
∪
⋯
∪
A
n
\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n
i=1⋃nAi=A1∪A2∪⋯∪An
A
1
,
A
2
,
⋯
,
A
n
,
⋯
A_1 , A_2 , \cdots , A_n , \cdots
A1,A2,⋯,An,⋯ yes Countable A collection of , be The primary union form is recorded as :
⋃
i
=
1
∞
A
i
=
A
1
∪
A
2
∪
⋯
\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots
i=1⋃∞Ai=A1∪A2∪⋯
Two 、 Union example
aggregate
A
=
{
x
∈
N
∣
5
≤
x
≤
10
}
A = \{ x \in N | 5 \leq x \leq 10 \}
A={ x∈N∣5≤x≤10} , aggregate
B
=
{
x
∈
N
∣
x
≤
10
∨
x
yes
plain
Count
}
B = \{ x \in N | x \leq 10 \lor x Prime number \}
B={ x∈N∣x≤10∨x yes plain Count }
A
∪
B
=
{
2
,
3
,
5
,
6
,
7
,
8
,
9
,
10
}
A \cup B = \{ 2, 3, 5 ,6,7,8,9,10 \}
A∪B={ 2,3,5,6,7,8,9,10}
3、 ... and 、 intersection
intersection :
A
,
B
A, B
A,B It's two sets ,
A
A
A and
B
B
B A collection of common elements , be called
A
,
B
A , B
A,B Intersection of sets ;
Write it down as :
A
∩
B
A \cap B
A∩B ,
∩
\cap
∩ be called Transportation operator ;
Symbolize :
A
∩
B
=
{
x
∣
x
∈
A
∧
x
∈
B
}
A \cap B = \{ x | x \in A \land x \in B \}
A∩B={ x∣x∈A∧x∈B}
Primary delivery : Intersection of two sets , It can be extended to A limited number / Countable The union of sets , be called Primary delivery ;
A
1
,
A
2
,
⋯
,
A
n
A_1 , A_2 , \cdots , A_n
A1,A2,⋯,An yes
n
n
n A collection of , be
A
1
∩
A
2
∩
⋯
∩
A
n
=
{
x
∣
∀
i
(
1
≤
i
≤
n
→
x
∈
A
i
)
}
A_1 \cap A_2 \cap \cdots \cap A_n = \{ x | \forall i ( 1 \leq i \leq n \ \to \ x \in A_i ) \}
A1∩A2∩⋯∩An={ x∣∀i(1≤i≤n → x∈Ai)} , Write it down as
⋂
i
=
1
n
A
i
=
A
1
∩
A
2
∩
⋯
∩
A
n
\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n
i=1⋂nAi=A1∩A2∩⋯∩An
A
1
,
A
2
,
⋯
,
A
n
,
⋯
A_1 , A_2 , \cdots , A_n , \cdots
A1,A2,⋯,An,⋯ yes Countable A collection of , be The primary union form is recorded as :
⋂
i
=
1
∞
A
i
=
A
1
∩
A
2
∩
⋯
\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \cdots
i=1⋂∞Ai=A1∩A2∩⋯
Four 、 Example of intersection
aggregate
A
=
{
x
∈
N
∣
5
≤
x
≤
10
}
A = \{ x \in N | 5 \leq x \leq 10 \}
A={ x∈N∣5≤x≤10} , aggregate
B
=
{
x
∈
N
∣
x
≤
10
∧
x
yes
plain
Count
}
B = \{ x \in N | x \leq 10 \land x Prime number \}
B={ x∈N∣x≤10∧x yes plain Count }
A
∩
B
=
{
5
,
7
}
A \cap B = \{ 5, 7 \}
A∩B={ 5,7}
5、 ... and 、 Disjoint
Disjoint :
A
,
B
A , B
A,B Two sets , If
A
∩
B
=
∅
A \cap B = \varnothing
A∩B=∅ , said
A
A
A and
B
B
B The two sets are Disjoint Of ;
Extend to multiple collections :
A
1
,
A
2
,
⋯
A_1 , A_2 , \cdots
A1,A2,⋯ Is a countable set , arbitrarily
i
≠
j
i \not= j
i=j ,
A
i
∩
A
j
=
∅
A_i \cap A_j = \varnothing
Ai∩Aj=∅ All set up , said
A
1
,
A
2
,
⋯
A_1 , A_2 , \cdots
A1,A2,⋯ Are disjoint ;
6、 ... and 、 Relative complement
Relative complement :
A
,
B
A , B
A,B Two sets , Belong to
A
A
A aggregate and Do not belong to
B
B
B aggregate Of A collection of all elements , be called
B
B
B Yes
A
A
A The relative complement of ;
Write it down as :
A
−
B
A - B
A−B
Symbolize :
A
−
B
=
{
x
∣
x
∈
A
∧
x
∉
B
}
A-B = \{ x | x \in A \land x \not\in B \}
A−B={ x∣x∈A∧x∈B}
7、 ... and 、 Symmetry difference
Symmetry difference :
A
,
B
A , B
A,B It's two sets , Belong to
A
A
A aggregate and Do not belong to
B
B
B aggregate , Belong to
B
B
B aggregate and Do not belong to
A
A
A aggregate , Of All elements , The set formed is called
A
A
A And
B
B
B Symmetry difference of ;
Write it down as :
A
⊕
B
A \oplus B
A⊕B
Symbolize :
A
⊕
B
=
{
x
∣
(
x
∈
A
∧
x
∉
B
)
∨
(
x
∉
A
∧
x
∈
B
)
}
A \oplus B = \{ x | ( x \in A \land x \not\in B ) \lor ( x \not\in A \land x \in B ) \}
A⊕B={ x∣(x∈A∧x∈B)∨(x∈A∧x∈B)}
Symmetry difference And Relative complement Relationship :
A
⊕
B
=
(
A
−
B
)
∪
(
B
−
A
)
=
(
A
∪
B
)
−
(
A
∩
B
)
A \oplus B = ( A - B ) \cup ( B - A ) = ( A \cup B ) - ( A \cap B )
A⊕B=(A−B)∪(B−A)=(A∪B)−(A∩B)
(
A
−
B
)
∪
(
B
−
A
)
( A - B ) \cup ( B - A )
(A−B)∪(B−A) :
A
A
A Yes
B
B
B The relative complement of , And
B
B
B Yes
A
A
A The relative complement of Of Combine ;
(
A
∪
B
)
−
(
A
∩
B
)
( A \cup B ) - ( A \cap B )
(A∪B)−(A∩B) :
A
,
B
A, B
A,B Union Yes
A
,
B
A,B
A,B Relative complement of intersection ;
8、 ... and 、 Absolute complement
Absolute complement :
E
E
E It's the whole book ,
A
⊆
E
A \subseteq E
A⊆E , The complete
E
E
E contain
A
A
A aggregate , call
A
A
A Yes
E
E
E The relative complement of by
A
A
A The absolute complement of ;
Write it down as :
∼
A
\sim A
∼A
Symbolize :
∼
A
=
{
x
∣
x
∈
E
∧
x
∉
A
}
\sim A = \{ x | x \in E \land x \not\in A \}
∼A={ x∣x∈E∧x∈A}
among
E
E
E It's the whole book ,
x
∈
E
x \in E
x∈E To be eternal , according to Propositional logic Equivalent calculus Of The same thing ,
1
1
1 Syntaxis Any value , The true value is still Any value In itself ;
therefore , Sure Get rid of Conjunctions Ahead
x
∈
E
x \in E
x∈E , The result is :
∼
A
=
{
x
∣
x
∉
A
}
\sim A = \{ x | x \not\in A \}
∼A={ x∣x∈A}
Nine 、 Generalized Union
Generalized Union :
A
\mathscr{A}
A It's a Set family , Set family
A
\mathscr{A}
A All in Collection elements Of A collection of elements , be called Set family
A
\mathscr{A}
A Generalized union of ;
Write it down as :
∪
A
\cup \mathscr{A}
∪A
Symbolize :
∪
A
=
{
x
∣
∃
z
(
x
∈
z
∧
z
∈
A
)
}
\cup \mathscr{A} = \{ x | \exist z ( x \in z \land z \in \mathscr{A} ) \}
∪A={ x∣∃z(x∈z∧z∈A)}
Examples of generalized union :
A
=
{
{
a
,
b
}
,
{
a
,
c
}
,
{
a
,
b
,
c
}
}
\mathscr{A} = \{ \{a, b\} , \{a, c\} , \{a, b, c\} \}
A={ { a,b},{ a,c},{ a,b,c}}
∪
A
=
{
a
,
b
,
c
}
\cup \mathscr{A} = \{ a, b, c \}
∪A={ a,b,c}
Ten 、 Generalized intersection
Generalized intersection :
A
\mathscr{A}
A It's a Set family , Set family
A
\mathscr{A}
A All in Collection elements Of A collection of common elements , be called Set family
A
\mathscr{A}
A Generalized intersection of ;
Write it down as :
∩
A
\cap \mathscr{A}
∩A
Symbolize :
∩
A
=
{
x
∣
∀
z
(
z
∈
A
→
x
∈
z
)
}
\cap \mathscr{A} = \{ x | \forall z ( z \in \mathscr{A} \to x \in z ) \}
∩A={ x∣∀z(z∈A→x∈z)}
Examples of generalized union :
A
=
{
{
a
,
b
}
,
{
a
,
c
}
,
{
a
,
b
,
c
}
}
\mathscr{A} = \{ \{a, b\} , \{a, c\} , \{a, b, c\} \}
A={ { a,b},{ a,c},{ a,b,c}}
∩
A
=
{
a
}
\cap \mathscr{A} = \{ a \}
∩A={ a}
11、 ... and 、 Set operation priority
The first kind of operation ( Monocular operator ) : Absolutely make up , Power set , Generalized intersection , Generalized Union ; Operations are performed from left to right ;
The second kind of operation ( Binocular operator ) : Primary union , Primary delivery , Relative complement , Symmetry difference ; Operate in the order of parentheses , Without parentheses, operations are performed from left to right ;
边栏推荐
- 300+ documents! This article explains the latest progress of multimodal learning based on transformer
- Js/ts bottom implementation double click event
- [Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
- 2022-07-02: what is the output of the following go language code? A: Compilation error; B:Panic; C:NaN。 package main import “fmt“ func main() { var a =
- 【毕业季·进击的技术er】职场人的自白
- 2022 Shandong Province safety officer C certificate examination questions and Shandong Province safety officer C certificate simulation examination question bank
- 2022 tea master (intermediate) examination questions and analysis and tea master (intermediate) practical examination video
- JS实现图片懒加载
- [mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
- [set theory] set concept and relationship (set represents | number set | set relationship | contains | equality | set relationship property)
猜你喜欢
SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
pytorch难学吗?如何学好pytorch?
Arduino application development - LCD display GIF dynamic diagram
Cnopendata China Customs Statistics
300+ documents! This article explains the latest progress of multimodal learning based on transformer
拆一辆十万元的比亚迪“元”,快来看看里面的有哪些元器件。
Fcpx template: sweet memory electronic photo album photo display animation beautiful memory
300+篇文献!一文详解基于Transformer的多模态学习最新进展
CVPR 2022 | Dalian Technology propose un cadre d'éclairage auto - étalonné pour l'amélioration de l'image de faible luminosité de la scène réelle
Nodejs Foundation: shallow chat URL and querystring module
随机推荐
2022 mobile crane driver examination registration and mobile crane driver operation examination question bank
"Final review" 16/32-bit microprocessor (8086) basic register
Database management tool, querious direct download
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
树莓派如何连接WiFi
What is the correct way to compare ntext columns with constant values- What's the right way to compare an NTEXT column with a constant value?
What is pytorch? Is pytorch a software?
DAPP for getting started with eth
Export of zip file
Interface embedded in golang struct
JS realizes lazy loading of pictures
CVPR 2022 | 大連理工提出自校准照明框架,用於現實場景的微光圖像增强
深潜Kotlin协程(二十):构建 Flow
Fcpx template: sweet memory electronic photo album photo display animation beautiful memory
[home push IMessage] software installation virtual host rental tothebuddy delay
Appium自动化测试框架
Competitive product analysis and writing
Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
2022 Shandong Province safety officer C certificate examination questions and Shandong Province safety officer C certificate simulation examination question bank
2022 polymerization process examination questions and polymerization process examination skills