当前位置:网站首页>求各种极限的方法
求各种极限的方法
2022-07-01 18:44:00 【Debroon】
直接代入型
- lim x − > 3 ( x + 1 ) \lim\limits_{x->3}(x+1) x−>3lim(x+1)
x 的极限接近3,就是在 3 附近,我们直接把 x=3 代入 x+1 中计算,得 4.
有一些特例:
- 常 数 ∞ = 0 \frac{常数}{∞}=0 ∞常数=0
- ∞ 常 数 = ∞ \frac{∞}{常数}=∞ 常数∞=∞
- 非 零 常 数 0 = ∞ \frac{非零常数}{0}=∞ 0非零常数=∞
- ∞ > 0 = ∞ ∞^{>0}=∞ ∞>0=∞
- ∞ < 0 = 1 ∞ > 0 = 0 ∞^{<0}=\frac{1}{∞^{>0}}=0 ∞<0=∞>01=0
- n ∞ = 0 , 0 > n > 1 n^{∞}=0,0>n>1 n∞=0,0>n>1
- n ∞ = ∞ , n > 1 n^{∞}=∞,n>1 n∞=∞,n>1
∞ ∞ \frac{∞}{∞} ∞∞ 型
一些题目直接代入是无解的,比如 ∞ ∞ \frac{∞}{∞} ∞∞ 型,算出来不是一个具体数字,而是一个趋势。
- lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
解法:抓主要趋势
在很多个趋势(∞)里,我们要找到最大的那个趋势,因为那个才是影响最大的项。
∞ ∞ \frac{∞}{∞} ∞∞ 型,求解步骤:
- 找出趋势
- 看指数,分子、分母保留最大的趋势
lim x − > ∞ x 100 + x − 1001 + x x 1000 + 2 x \lim\limits_{x->∞}\frac{x^{100}+x^{-1001}+x}{x^{1000}+2x} x−>∞limx1000+2xx100+x−1001+x
- = lim x − > ∞ ∞ 100 + ∞ − 1001 + ∞ ∞ 1000 + 2 ∞ \lim\limits_{x->∞}\frac{∞^{100}+∞^{-1001}+∞}{∞^{1000}+2∞} x−>∞lim∞1000+2∞∞100+∞−1001+∞
- = lim x − > ∞ ∞ + 0 + ∞ ∞ + ∞ \lim\limits_{x->∞}\frac{∞+0+∞}{∞+∞} x−>∞lim∞+∞∞+0+∞
- = lim x − > ∞ x 100 x 1000 \lim\limits_{x->∞}\frac{x^{100}}{x^{1000}} x−>∞limx1000x100
- = lim x − > ∞ 1 x 900 \lim\limits_{x->∞}\frac{1}{x^{900}} x−>∞limx9001
- = lim x − > ∞ 1 ∞ 900 \lim\limits_{x->∞}\frac{1}{∞^{900}} x−>∞lim∞9001
- = 1 ∞ \frac{1}{∞} ∞1
- = 0 0 0
解法:用洛必达法则
0 0 \frac{0}{0} 00 型
lim x − > 0 x s i n x = 0 0 \lim\limits_{x->0}\frac{x}{sinx}=\frac{0}{0} x−>0limsinxx=00
当把 x − > 0 x->0 x−>0 代入式子后,会变成 0 0 \frac{0}{0} 00,也会出现无解的情况。
解法:用等价无穷小代换
当某部分趋向 0 时,有五种情况:
第一种情况, x − > 0 , s i n x = x x->0,sin x = x x−>0,sinx=x,
- lim x − > 0 x s i n x = x x = 1 \lim\limits_{x->0}\frac{x}{sinx}=\frac{x}{x}=1 x−>0limsinxx=xx=1
第二种情况, 1 − c o s Δ 1-cos\Delta 1−cosΔ 可变为 1 2 Δ 2 \frac{1}{2}\Delta^{2} 21Δ2
- lim x − > 0 1 − c o s x x = lim x − > 0 1 2 x 2 x \lim\limits_{x->0}\frac{1-cosx}{x}=\lim\limits_{x->0}\frac{\frac{1}{2}x^{2}}{x} x−>0limx1−cosx=x−>0limx21x2
后续三种情况性质同上,都是代换形式。
解法:用洛必达法则
若将未知数 x − > 0 、 x − > ∞ x->0、x->∞ x−>0、x−>∞ 代入后,式子是 0 0 \frac{0}{0} 00 or ∞ ∞ \frac{∞}{∞} ∞∞ ,则 lim f ( x ) g ( x ) = lim f ′ ( x ) g ′ ( x ) \lim\limits \frac{f(x)}{g(x)}=\lim\limits \frac{f'(x)}{g'(x)} limg(x)f(x)=limg′(x)f′(x),分子变成分子的导数、分母变成分母的导数。
∞ ⋅ 0 ∞·0 ∞⋅0 型
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = ∞ · (cos 0 - 1)
- = ∞ · 0
直接代入遇到 ∞ ⋅ 0 ∞·0 ∞⋅0,也算不出结果。
我们有另外的解法:
- 找到最简单的一项 a
- 把此项变成 1 1 a \frac{1}{\frac{1}{a}} a11
lim x − > ∞ x ( c o s 1 x − 1 ) \lim\limits_{x->∞}x(cos\frac{1}{x}-1) x−>∞limx(cosx1−1)
- = lim x − > ∞ 1 1 x ( c o s 1 x − 1 ) \lim\limits_{x->∞}\frac{1}{\frac{1}{x}}(cos\frac{1}{x}-1) x−>∞limx11(cosx1−1)
- = lim x − > ∞ c o s 1 x − 1 1 x \lim\limits_{x->∞}\frac{cos\frac{1}{x}-1}{\frac{1}{x}} x−>∞limx1cosx1−1
- = 0 0 \frac{0}{0} 00
指数、底数都有 x 的极限
形如: lim x − > 0 ( 1 + 3 x ) 2 s i n x \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}} x−>0lim(1+3x)sinx2
把 底 数 指 数 底数^{指数} 底数指数 变成 e 指 数 ⋅ l n 底 数 e^{指数·ln底数} e指数⋅ln底数
lim x − > 0 ( 1 + 3 x ) 2 s i n x = lim x − > 0 e 2 s i n x l n ( 1 + 3 x ) \lim\limits_{x->0}(1+3x)^{\frac{2}{sinx}}=\lim\limits_{x->0}e^{\frac{2}{sinx}ln(1+3x)} x−>0lim(1+3x)sinx2=x−>0limesinx2ln(1+3x)
= lim x − > 0 e 2 l n ( 1 + 3 x ) s i n x \lim\limits_{x->0}e^{\frac{2ln(1+3x)}{sinx}} x−>0limesinx2ln(1+3x)
lim x − > ? e 指 数 = e lim x − > ? 指 数 \lim\limits_{x->?}e^{指数}=e^{\lim\limits_{x->?}指数} x−>?lime指数=ex−>?lim指数
= e lim x − > 0 2 l n ( 1 + 3 x ) s i n x e^{\lim\limits_{x->0}}{\frac{2ln(1+3x)}{sinx}} ex−>0limsinx2ln(1+3x)
函数的左右极限
需要求左右极限的情形
有三种情况的极限,只能通过最原始的方法 — 左右极限来求。
- 第一类,函数是带大括号的分段函数,要求的极限是在分段点处的极限。

- 第二类,数 g ( x ) g^{(x)} g(x) 在 g ( x ) g(x) g(x) 的分母为 0 处的极限。

- 第三类, a r c t a n g ( x ) arctan ~g(x) arctan g(x) 在 g ( x ) g(x) g(x) 的分母为 0 处的极限

做题方法:
- 先求左极限、右极限
- 当左极限 = 右极限 = 不为 ∞ 的数时,函数极限存在,且极限 = 左极限 = 右极限
- 当左极限 = 右极限 = -∞ 或者 +∞ 时,函数极限为 ∞ / 不存在 / 没有极限
- 当左极限 != 右极限 且 存在不为 ∞ 的值时,函数极限不存在 且 不为 ∞
边栏推荐
- 241. Different Ways to Add Parentheses
- Contos 7 搭建sftp之创建用户、用户组以及删除用户
- Three ways for redis to realize current limiting
- Learn MySQL from scratch - database and data table operations
- DTD建模
- SuperOptiMag 超导磁体系统 — SOM、SOM2 系列
- 6月刊 | AntDB数据库参与编写《数据库发展研究报告》 亮相信创产业榜单
- 助力数字经济发展,夯实数字人才底座—数字人才大赛在昆成功举办
- Lean thinking: source, pillar, landing. I understand it after reading this article
- 宝,运维100+服务器很头疼怎么办?用行云管家!
猜你喜欢

【Go ~ 0到1 】 第五天 7月1 类型别名,自定义类型,接口,包与初始化函数

苹果产品在日本全面涨价,iPhone13涨19%

Games202 operation 0 - environment building process & solving problems encountered
![[live broadcast appointment] database obcp certification comprehensive upgrade open class](/img/38/1ec382d0edda83d4052868255af9ea.jpg)
[live broadcast appointment] database obcp certification comprehensive upgrade open class

XML语法、约束

Witness the times! "The future of Renji collaboration has come" 2022 Hongji ecological partnership conference opens live broadcast reservation

MATLAB中subplot函数的使用

XML syntax, constraints

B2B e-commerce platform solution for fresh food industry to improve the standardization and transparency of enterprise transaction process

Lumiprobe 细胞成像研究丨PKH26细胞膜标记试剂盒
随机推荐
记一次 .NET 差旅管理后台 CPU 爆高分析
[pytorch record] distributed training dataparallel and distributeddataparallel of the model
MFC中如何重绘CListCtrl的表头
【直播预约】数据库OBCP认证全面升级公开课
论文阅读【Discriminative Latent Semantic Graph for Video Captioning】
机械设备行业数字化供应链集采平台解决方案:优化资源配置,实现降本增效
Lumiprobe 亚磷酰胺丨六甘醇亚磷酰胺说明书
kubernetes命令入门(namespaces,pods)
Games202 operation 0 - environment building process & solving problems encountered
PostgreSQL varchar[] 数组类型操作
Supervarimag superconducting magnet system SVM series
Taiaisu M source code construction, peak store app premium consignment source code sharing
论文阅读【Learning to Discretely Compose Reasoning Module Networks for Video Captioning】
有关 M91 快速霍尔测量仪的更多信息
华为联机对战服务玩家掉线重连案例总结
Dom4J解析XML、Xpath检索XML
见证时代!“人玑协同 未来已来”2022弘玑生态伙伴大会开启直播预约
Dlib+Opencv库实现疲劳检测
【To .NET】C#集合类源码解析
Implement a Prometheus exporter