当前位置:网站首页>Chenyun pytorch learning notes_ Build RESNET with 50 lines of code
Chenyun pytorch learning notes_ Build RESNET with 50 lines of code
2022-06-27 23:57:00 【51CTO】

import torch as t
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
# Residual fast Residual network formula a^[L+2] = g(a^[L]+z^[L+2])
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1, shortcut=None): #shortcut=None Corresponding to the solid line of cross layer connection in the figure , Corresponding residual network formula a^[L+2] = g(a^[L]+z^[L+2]), Otherwise, it should be
# The dotted line of the first residual block after the number of channels changes , At this time, the corresponding residual formula is a^[L+2] = g(z^[L+1]+z^[L+2])
nn.Module.__init__(self)
self.left = nn.Sequential(# obtain z^[L+2]
nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace= True),
nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),
nn.BatchNorm2d(outchannel))
self.right = shortcut# Decide whether the cross layer connection is a solid line or a dotted line
def forward(self, x):
out = self.left(x)
residual = x if self.right is None else self.right(x)
out += residual
return F.relu(out) #a^[L+2] = g(a^[L]+z^[L+2])
# ResNet34
class ResNet(nn.Module):
def __init__(self, num_classes=1000):
nn.Module.__init__(self)
# The first few layers of image conversion ( Network input part )
self.pre = nn.Sequential(# Corresponding to the part in the figure before starting the residual processing
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(3, 2, 1)
)
# Intermediate convolution part
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)#stride=2 Representing the first layer of each residual error 2/
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
# The average pooling
self.avgpool = nn.AvgPool2d(7, stride=1)
# Full connection for classification
self.fc = nn.Linear(512, 1000)
def _make_layer(self, inchannel, outchannel, block_num, stride=1):
# Adjust the number of input and output channels to be consistent . Like the second one layer when , The first residual fast input is 64, Output is 128
shortcut = nn.Sequential(# The first cross layer straight line corresponding to the fast residuals of the same number of channels of each type is a dotted line
nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),
nn.BatchNorm2d(outchannel))
layers = []
layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))
for i in range(1, block_num):
layers.append(ResidualBlock(outchannel, outchannel))
return nn.Sequential(*layers)
def forward(self, x):
x = self.pre(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)#torch.Size([1, 512])
return self.fc(x)
model = ResNet()
input = t.autograd.Variable(t.randn(1, 3, 224, 224))
o = model(input)
print(o)
model = models.resnet34()# Call toolkit solid line residual network
o1 = model(input)
print(o1)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
output


D:\anaconda\anaconda\pythonw.exe D:/Code/Python/pytorch Introduction and practice / Chapter four _ Neural network toolbox nn/ build ResNet.py
tensor([[-3.7385e-01, -2.2010e-01, 8.9218e-01, -6.6067e-01, -5.8422e-01,
7.6649e-01, -8.0401e-01, -3.0225e-01, 2.4314e+00, 9.1019e-01,
-1.1270e+00, -2.9847e-01, -6.0022e-01, -3.5480e-01, 3.5396e-01,
3.6958e-01, -5.9464e-01, -4.5049e-01, 7.3531e-01, -1.1082e+00,
-2.9160e-01, 4.7690e-01, -5.0259e-01, 4.1628e-01, -9.3588e-01,
2.4529e-01, 1.2500e+00, -1.6038e-01, -3.3023e-01, 3.6957e-01,
4.5195e-01, -6.0984e-01, 8.9558e-02, 4.2407e-01, 1.2888e+00,
-5.3017e-01, -5.0509e-01, 1.3775e+00, 2.0299e-01, 2.7299e-01,
-8.6381e-02, 8.3670e-01, 1.9371e-01, 8.4775e-01, 4.0002e-01,
8.1064e-01, -1.0556e+00, 7.7371e-01, 6.8891e-01, -1.0209e+00,
-3.1227e-01, 3.0977e-02, -2.9849e-01, 1.0534e+00, -1.8499e-01,
-8.6205e-01, -3.4020e-01, 4.2196e-01, -1.0207e-01, -1.2846e+00,
3.1905e-01, 9.9212e-01, 6.0208e-01, 6.2960e-01, 4.1285e-01,
-1.1597e+00, -2.5292e-01, 7.0145e-01, 4.8221e-01, 6.6790e-01,
2.8644e-01, -2.6554e-01, 3.4255e-01, 3.8341e-01, -4.2387e-01,
-7.5981e-01, 2.3203e-01, -3.8434e-01, -6.9346e-01, -5.4996e-01,
2.7865e-01, -3.9543e-01, -7.8868e-01, -6.5345e-01, 2.9946e-01,
5.2693e-01, -4.5380e-01, -2.2429e-01, -1.4129e+00, -3.7963e-01,
-2.2408e-01, -6.9917e-02, 1.7414e-01, -2.7821e-01, -6.4848e-01,
-4.3716e-01, -3.5371e-01, -3.6100e-01, -5.7401e-01, 3.7754e-01,
-4.1583e-02, -3.4307e-01, 5.9179e-01, 2.7279e-02, -2.6988e-01,
-4.7790e-01, -3.5140e-01, 5.1556e-01, 8.0434e-01, -4.4143e-01,
6.0849e-01, 3.3159e-01, -7.6929e-03, 1.0759e-01, 2.6402e-01,
2.3914e-01, -6.5949e-01, -9.0380e-01, -5.7449e-01, 8.1698e-01,
9.0535e-01, 3.7668e-01, 3.2937e-01, 4.5524e-01, 1.6086e-01,
-2.8713e-01, 1.7160e-01, 3.5057e-01, 7.0938e-01, -6.3579e-02,
-3.9463e-01, 2.6736e-01, -4.4593e-01, 1.0601e+00, -3.6988e-01,
-6.2878e-01, 3.7628e-01, 5.3490e-01, -3.2025e-01, -6.2648e-01,
-5.2117e-02, -4.0097e-01, -1.1775e+00, 1.2687e+00, 1.1808e+00,
3.4300e-01, -2.3935e-01, -7.8519e-01, 3.3952e-01, -2.1779e-01,
-4.9251e-01, -4.1354e-01, -7.1647e-01, 1.1502e+00, -9.0239e-01,
-1.8571e-01, 8.7283e-01, 5.6701e-01, 9.5695e-02, -2.6622e-01,
3.3122e-02, 5.8339e-01, 6.4253e-01, -1.2866e-01, 1.9386e+00,
3.0843e-01, 1.7281e-01, 1.3516e-01, -7.3507e-02, -3.3128e-01,
-6.3045e-02, -1.6130e-01, -6.2078e-01, 1.0369e+00, 7.4816e-01,
4.3222e-01, -1.2471e+00, -2.8628e-01, -2.2325e-01, -1.3061e+00,
6.0621e-01, 1.2517e+00, 7.9576e-01, 1.3829e-01, 3.0933e-01,
-5.7864e-01, -1.3680e-01, 4.2718e-01, 6.0374e-01, -6.5616e-01,
8.8827e-01, 6.1121e-01, 9.2531e-01, -9.0994e-01, -1.6550e+00,
-9.5535e-01, -1.3156e+00, 2.3245e-01, -4.6053e-01, 1.9782e-01,
-7.3612e-01, 7.3810e-01, -6.6007e-02, -5.0354e-01, 5.7257e-01,
-8.2178e-02, -1.0175e+00, -7.8140e-01, -8.3596e-02, 4.3341e-01,
6.1036e-01, -6.0388e-01, 3.3036e-01, 3.2923e-01, 1.2033e+00,
-6.1371e-01, -8.7145e-01, -7.0251e-02, -1.9632e-01, -4.0972e-01,
-6.5015e-01, -1.1036e+00, 4.5884e-01, -7.8906e-01, 9.7192e-01,
7.7442e-01, 3.4869e-01, 9.7635e-02, -9.9016e-01, 7.6778e-01,
3.5343e-01, 1.1142e-01, -1.4715e-01, -3.1201e-01, -4.6759e-01,
4.2290e-01, 2.9731e-01, -5.6528e-01, -4.6112e-01, -9.2171e-03,
2.7790e-01, 2.2434e-01, 8.3167e-01, 6.0836e-01, 7.9597e-01,
8.8949e-01, -5.5800e-01, -5.8002e-01, 2.3448e-02, -3.7334e-01,
-2.2329e-01, -1.1076e+00, -3.0460e-01, 1.4154e-02, 3.7740e-04,
9.9988e-02, -7.1763e-01, -2.9103e-01, 3.7885e-01, 4.5475e-01,
-8.8300e-01, -5.9084e-01, 1.0630e-01, -7.6122e-01, 5.6615e-01,
1.5967e-02, -1.3541e+00, -2.3975e-02, 3.4815e-01, 6.6317e-01,
3.3460e-01, 7.1318e-01, 1.1366e+00, 1.1671e+00, 5.2543e-02,
-8.5805e-01, 5.0632e-01, -1.0799e+00, -3.6625e-01, 6.3304e-01,
1.7650e-01, 1.2427e+00, -4.2824e-01, -9.7264e-01, -6.5294e-01,
-4.1995e-01, 1.6176e-01, 6.5306e-01, 6.5527e-01, 1.5359e-01,
-1.4403e-02, 5.5345e-01, -1.2129e+00, -1.6561e-01, -1.8614e-01,
-6.3296e-01, 9.8403e-01, 1.9044e-01, -7.3609e-01, 1.3295e-01,
-2.9614e-01, -2.6278e-01, 6.1773e-01, -2.6080e-02, -2.6567e-01,
2.1076e-01, -6.1336e-01, -3.0605e-01, 4.8003e-01, -3.7147e-01,
-3.3662e-01, 6.8647e-01, 1.2991e+00, 1.0152e+00, -4.5890e-01,
-4.8116e-01, 6.6182e-01, 2.0629e-01, 1.1687e+00, -1.4938e-01,
5.4687e-01, 2.8266e-01, 1.2739e+00, 2.1758e-01, 3.4379e-01,
-1.7554e-01, -2.9683e-01, -3.6898e-01, -3.4443e-01, 4.4539e-01,
6.2362e-01, -7.0732e-01, 6.8179e-01, -8.1357e-01, -2.9273e-02,
1.0692e-01, 3.0787e-01, -1.5126e-01, -6.9601e-01, -6.7925e-03,
-1.2032e-01, 4.3556e-01, -2.5765e-01, 3.5000e-01, 2.6138e-01,
-7.1060e-01, -7.8778e-01, -5.7865e-01, 1.9608e-02, -2.6077e-01,
2.3804e-01, 5.9406e-01, 6.5240e-01, 5.8997e-01, -2.6604e-01,
-8.2560e-01, -4.9733e-01, -1.1837e+00, -6.0205e-01, 4.3423e-01,
8.6452e-01, -6.5541e-01, -4.8626e-01, 6.9140e-01, 1.4461e-01,
-2.2926e-01, -2.0209e-01, -2.8848e-01, -9.6731e-01, -1.7899e-01,
-9.3281e-01, -1.1425e-01, 8.9797e-01, -1.6610e-01, -1.0455e+00,
-5.4111e-01, -6.5867e-01, 4.8375e-01, 8.1165e-01, -4.3111e-01,
1.2101e+00, -7.1869e-01, -9.3713e-01, 8.0531e-01, -1.0737e+00,
-8.2951e-02, 9.9555e-01, 5.7983e-01, 6.4511e-02, -1.5688e-01,
-7.8642e-01, 2.1101e-01, 3.5995e-01, -1.1792e+00, 2.7492e-01,
-1.1338e+00, 1.4390e+00, 7.4970e-01, 4.1525e-01, -2.2618e-01,
-5.6868e-01, -1.0587e+00, -8.4871e-01, 4.2294e-01, -7.5937e-01,
1.2478e+00, 3.1876e-01, 5.4925e-02, -4.2920e-01, 2.9908e-02,
-7.2298e-01, -5.0745e-01, -1.0847e-01, -3.3263e-01, 3.8415e-01,
-3.0520e-01, -7.3637e-01, 3.7017e-01, 2.0959e-01, -3.9341e-01,
9.2597e-02, -7.0634e-01, -5.4246e-01, -5.9055e-01, 1.0688e-01,
-5.5952e-01, 1.4558e+00, -7.3014e-01, -4.1277e-01, 1.1603e+00,
-2.9320e-01, -1.1457e+00, 7.0188e-01, -7.2187e-01, 4.9911e-01,
-1.7366e-01, 7.8894e-01, -6.5754e-01, -6.5171e-01, 2.3485e-01,
2.2758e-01, 1.1867e+00, 4.1541e-01, 8.7716e-02, 5.4310e-01,
-3.5418e-01, -2.2289e-01, 5.3745e-01, 4.9035e-01, -1.5985e-01,
1.4329e-02, 1.1308e+00, -9.6263e-01, 2.2490e-01, 1.6313e-01,
5.1836e-01, 2.7269e-01, 1.3424e-01, -3.2040e-01, 1.7400e-01,
-6.9929e-01, -7.7752e-01, -6.4446e-01, 2.9672e-01, -1.3011e-02,
-4.6553e-01, 5.0777e-01, -2.2849e-01, -3.6042e-01, 1.3338e+00,
1.6765e-01, -9.3721e-01, 5.1379e-01, 2.6106e-01, 7.9202e-01,
7.5039e-01, -7.1235e-02, -5.7395e-03, -5.5282e-01, 7.3725e-01,
5.6211e-01, -6.3226e-01, -4.4917e-02, 4.0115e-01, 3.1123e-01,
-8.5666e-01, -1.1569e+00, 3.8246e-01, -4.3587e-01, -1.1493e+00,
-3.8287e-01, 3.4385e-01, -7.5745e-01, -2.5882e-01, -2.8164e-01,
-1.1965e-02, 2.1589e-01, -4.3658e-01, -1.3746e-01, 9.7378e-01,
-1.0517e+00, -4.0558e-01, -1.0544e-02, -6.4660e-02, -5.1592e-01,
4.5318e-01, 1.3184e+00, 3.7338e-01, 3.4490e-02, 1.4038e+00,
-1.6802e-01, 2.3007e-02, 4.4980e-03, 1.2705e-01, 2.7906e-01,
-8.4902e-01, -3.8745e-01, 3.1278e-01, -8.8074e-01, -4.7914e-01,
7.2190e-02, -6.4725e-01, -2.0902e-01, 1.2280e-01, -1.8186e-01,
1.0589e-01, -6.0947e-01, -2.8543e-01, -1.0723e+00, -1.7837e-01,
1.4746e+00, 1.1301e+00, 8.8037e-01, -3.8367e-01, 6.1571e-01,
5.8543e-02, 5.3181e-01, -2.4058e-01, 6.9641e-01, 5.4891e-01,
4.8759e-03, -1.2818e+00, 7.0707e-01, 4.6681e-01, -2.3600e-01,
-2.7093e-01, 2.1033e-01, -3.7307e-01, 2.2353e-01, -1.5244e-01,
2.1925e-02, -2.3214e-01, 2.5308e-02, 7.7142e-01, 6.8966e-01,
5.5418e-01, -3.1878e-01, -8.5453e-01, 5.2859e-01, 7.1266e-01,
3.4018e-01, 2.4858e-01, -7.1972e-01, 1.2186e+00, -8.9309e-01,
3.7593e-01, 9.3331e-01, 1.6154e+00, 3.6179e-01, 9.8585e-01,
5.0944e-01, 3.2588e-01, -2.8218e-01, -7.9708e-02, 5.0813e-01,
7.1221e-01, 3.9624e-01, 6.6906e-01, -1.6557e-01, -4.3672e-01,
-4.2653e-01, 7.3462e-01, -8.6661e-02, 6.1583e-01, 1.1201e+00,
-1.3712e+00, 7.1885e-01, -9.1739e-02, 4.3945e-01, 1.1710e+00,
-2.2104e-01, 2.4807e-01, 2.9516e-01, -1.0306e+00, 1.2226e+00,
-2.5720e-01, -2.0021e-01, -6.3561e-01, 7.7526e-01, -1.3281e-01,
4.2105e-01, -9.8721e-01, 6.0226e-02, -7.4250e-01, -1.1144e-01,
2.1858e-01, 1.0423e+00, -2.9606e-01, 1.8390e-01, 3.6015e-01,
-3.9900e-03, 8.7758e-02, 1.1577e-01, 1.1973e+00, 3.1103e-01,
-4.2398e-01, 3.0271e-01, -2.8444e-01, 5.1662e-01, -1.3356e+00,
5.8137e-01, -5.7901e-01, 6.6809e-01, 5.4561e-01, 7.4738e-01,
-9.4391e-03, -2.7110e-01, 6.9678e-02, -3.0574e-01, 4.4471e-01,
-6.3125e-02, 4.8383e-01, -4.3376e-01, 9.3516e-01, -1.0835e+00,
3.9941e-01, 7.5706e-01, -3.8424e-02, -1.5844e-01, 6.9874e-01,
-2.2643e-01, -8.1118e-01, 3.4155e-01, 6.2197e-01, -4.5426e-01,
-1.1235e-01, -2.8171e-01, -4.2020e-01, 5.8910e-03, -2.1005e-01,
9.5020e-01, -5.1491e-01, -5.2156e-01, -3.6768e-01, -3.3160e-01,
-8.8831e-01, 1.6263e-01, -1.2790e+00, -2.2097e-01, 6.3435e-01,
3.3925e-01, 5.1287e-01, 3.0567e-02, 1.4348e-01, -3.5183e-01,
-4.7715e-01, -5.9157e-01, -5.3332e-01, -1.2875e-01, -6.4399e-01,
1.2068e+00, -4.3453e-01, 3.6951e-01, -3.7221e-01, 1.0549e+00,
-7.8913e-01, -7.2606e-01, 1.7644e+00, -7.1351e-01, -4.7304e-01,
9.7223e-01, -7.1468e-01, 1.0018e-01, 6.0553e-01, 1.4333e-01,
3.6390e-01, -5.6337e-02, 3.2207e-01, 5.4261e-01, -4.5484e-01,
-9.2550e-02, -1.0209e-01, -5.5761e-01, -8.3987e-02, 6.7479e-01,
7.3383e-01, 3.2637e-01, 2.2839e-01, 7.3619e-01, 4.5373e-02,
1.4767e+00, 1.1286e+00, 1.0320e-01, 6.0987e-03, 1.8241e-02,
-4.1522e-01, 1.4877e+00, -9.9928e-02, 1.1028e+00, 1.8680e-01,
9.3361e-01, 1.1641e-03, -6.7221e-01, -1.1105e+00, -4.5087e-01,
-1.9451e-01, 5.3225e-01, -7.0291e-02, 2.6069e-01, 3.2638e-01,
-9.7803e-01, 2.5177e-01, -5.2165e-02, 3.2999e-01, 7.0848e-01,
-4.7834e-01, 1.2501e+00, -3.3023e-01, -9.7759e-01, 6.8180e-01,
-6.7149e-01, 1.3792e+00, -3.1857e-01, -9.0531e-01, 4.8713e-01,
-1.1678e-01, -5.3198e-01, -8.2755e-01, -6.2357e-01, -7.8093e-01,
-1.9248e-01, 2.3543e-01, -3.6204e-01, -3.1342e-01, -1.2192e+00,
5.2952e-01, 2.6511e-01, 1.4131e+00, -9.5214e-02, -7.0332e-01,
-1.9167e-01, 8.7300e-01, -3.5202e-01, 8.1680e-01, -1.1795e+00,
-4.6051e-01, -7.1857e-01, -1.1671e-01, -3.5521e-01, 3.9610e-01,
6.4604e-01, 2.4028e-01, 2.4551e-01, 3.8291e-01, 3.6420e-01,
-6.4876e-01, -1.0353e-01, -3.0709e-01, 5.1353e-01, 5.7663e-01,
2.8187e-01, 3.8347e-01, -3.2358e-01, 2.4605e-01, -5.6711e-01,
7.2537e-01, 9.1548e-01, 8.8802e-01, 6.2908e-01, 3.6824e-01,
-1.1807e-01, -6.2132e-01, -2.2127e-01, 7.0661e-01, -3.4173e-01,
3.7389e-02, 6.3347e-02, -1.5815e-01, -5.4016e-02, 6.1224e-01,
-1.1764e-01, -6.6400e-01, -6.9328e-01, 1.1396e-01, 2.9845e-01,
1.1607e+00, -3.9230e-01, 6.9676e-01, 3.7753e-01, -4.5834e-01,
3.5393e-01, -1.9701e-01, -4.0007e-02, 1.6460e+00, 1.0020e+00,
2.7125e-01, 5.4337e-01, 9.6963e-01, 3.7202e-01, 1.3688e-01,
5.5945e-01, -6.7389e-01, 4.1863e-01, 9.1551e-01, -1.4212e-01,
-8.4382e-01, 6.4143e-01, -2.8692e-01, -8.3050e-01, 5.6636e-01,
3.8771e-01, 6.7161e-01, 7.1014e-01, 8.8337e-01, -6.5802e-01,
-1.9257e-01, -8.7510e-01, -8.5440e-01, -1.0751e+00, -3.9010e-01,
9.7424e-01, -1.0402e-01, 5.7751e-01, 2.9744e-01, 7.4402e-01,
1.5031e-01, 2.2013e-01, -2.3053e-01, -4.6259e-01, 2.5106e-01,
-1.0140e+00, 8.0855e-01, -1.1636e-01, -7.8362e-02, -9.2715e-02,
-1.0271e+00, 2.9693e-01, -2.0904e-01, -5.0984e-01, 1.3045e+00,
4.8532e-01, 1.4346e-01, 7.6788e-01, 9.7047e-01, 4.0762e-01,
2.3484e-01, 3.1950e-01, -2.3318e-01, -6.8306e-03, 5.6380e-01,
-9.6460e-02, -2.8250e-01, 1.1092e+00, -3.1063e-02, -2.1305e-01,
6.3479e-01, 2.1984e-01, -1.1693e+00, 4.7175e-01, -1.3506e-01,
1.1924e-01, 4.1394e-01, -1.2817e+00, -2.7704e-01, 1.0168e+00,
2.1124e-01, 6.1006e-02, -2.0014e-01, 1.4460e+00, 3.5466e-01,
3.7454e-01, -1.2640e-02, 6.0403e-03, 3.2332e-01, 8.9131e-01,
4.5607e-02, -6.6399e-02, -2.0708e+00, 3.2648e-01, 7.6369e-01,
4.1520e-01, -2.7174e-01, -5.1358e-01, 9.6802e-01, 3.8855e-01,
6.7598e-01, 3.1721e-01, 2.0969e-01, -1.3217e-01, 7.5170e-01,
-1.0165e+00, 4.6450e-01, 3.1623e-01, -1.2664e-01, -5.8193e-01,
7.5702e-01, 2.1583e-01, 8.0843e-01, 8.0445e-01, -6.3687e-01,
-2.1509e-01, 1.3130e-01, -4.3707e-01, -3.1932e-01, 2.4451e-01,
1.8980e-01, 1.7880e-01, 5.7971e-01, -9.6651e-01, 4.5083e-01,
5.5928e-01, 3.5459e-01, 1.1491e-01, 1.0462e+00, -1.2330e-01,
-2.5296e-01, 2.2241e-02, 1.1558e+00, -5.2790e-01, -5.4470e-01,
6.7174e-01, -6.3254e-01, 1.0079e-01, -5.7307e-01, -5.3185e-01,
1.3242e+00, -4.9839e-01, -5.1236e-03, -1.1210e+00, 1.0798e+00,
7.2417e-02, -4.2987e-01, 1.2662e+00, 6.0314e-01, -9.2942e-02,
9.2841e-01, -1.3543e-01, -3.3278e-01, 6.6304e-01, -4.1726e-01,
-3.8710e-02, 6.5126e-01, -7.1032e-02, 3.6333e-01, 8.8658e-02,
5.5386e-01, -1.1523e+00, -4.8741e-01, -3.0395e-01, -7.6689e-01,
1.0167e+00, 2.8526e-01, 4.7810e-01, 1.0492e-01, 3.2575e-01,
-8.6603e-01, 8.0494e-01, 6.8050e-01, 1.5820e-01, -1.0125e-01,
-9.4131e-02, -8.0925e-01, 9.6557e-01, -3.8323e-04, -5.9713e-01,
-4.7461e-01, 2.8437e-01, -7.0949e-02, -6.6371e-01, 5.8345e-01,
-1.9877e-01, -1.0992e+00, -6.4899e-01, 7.9953e-01, 4.7137e-01,
1.0099e+00, 6.3704e-01, 2.3527e-01, 2.2146e-01, -1.3238e-01,
-4.7322e-01, 1.1008e+00, 4.1789e-01, -2.6206e-01, -2.6280e-01,
-1.3215e-01, -7.2749e-01, 8.8819e-02, 8.2486e-01, 9.9206e-01]],
grad_fn=<AddmmBackward>)
tensor([[ 0.8583, 0.2219, 0.0908, -0.3688, 1.1560, 0.7270, -0.1212, -0.3032,
-0.1714, -0.0670, -1.0323, 0.0047, -1.0780, -0.8921, -1.3603, -0.1051,
-0.7071, 0.1529, 0.4977, 0.6891, -0.3599, 0.1205, -0.0934, 0.2150,
1.1170, -0.3915, 0.2290, -0.2707, 0.2720, -0.8762, -0.7861, 0.0707,
-0.3628, -0.3093, -0.5939, -0.2183, -0.0052, 0.8033, -1.1063, -0.6420,
0.1120, 0.3753, -0.4286, -0.6054, -0.1547, -0.4218, 0.3286, -0.2107,
-0.4165, -0.0471, 0.0936, -0.8109, -0.2143, -1.0776, 0.7402, -0.2014,
0.5503, -1.1897, 0.1982, 0.3422, -0.2176, -0.3140, -1.1125, 0.5685,
-0.2621, -0.0292, -0.0085, 0.8044, -0.2474, 0.0391, -0.3945, -0.3764,
1.2721, 0.0749, 0.2646, 0.0626, 0.2451, -1.3575, 0.6655, 0.0903,
-0.1422, 0.3071, 0.9701, 0.4616, 0.8723, -1.8646, 0.0220, 1.1814,
-0.9941, 1.6733, -0.0821, -0.4536, -0.0352, -0.6677, -0.1204, 1.2320,
1.1207, 0.4285, -0.4761, 0.3149, 0.2277, -0.1647, -0.4141, 0.3424,
-1.0660, 0.0641, 0.0542, -0.3486, 0.3432, 0.0687, -0.1604, -0.5909,
-1.1305, 0.3894, -0.1907, -0.7874, -0.5636, -0.4908, 0.3239, 0.3048,
0.6679, 0.7988, -0.8538, -0.2247, 0.3454, -0.9895, 0.9839, -0.4592,
-0.3357, -1.3587, 0.7747, 0.2871, -0.3907, 0.2034, 0.1411, -0.5172,
1.5404, 0.5140, -1.2516, -0.1875, -0.1076, -1.9001, 0.2219, -0.1132,
0.2477, -0.1683, 0.9590, -0.3854, -0.2032, -0.3209, -0.6780, 0.0069,
0.8684, -0.6738, -0.3045, 0.7861, 0.1697, 0.3226, -0.7716, -0.0477,
0.0432, -0.5059, 0.2730, -0.6356, 1.0412, -0.2633, -0.9977, -0.3650,
0.3670, -0.6272, -0.1175, 1.1047, 0.7568, -0.0852, -0.3786, 1.2422,
-0.5950, -0.2451, 0.5207, -0.0848, 0.0894, -0.0162, -0.4142, -0.0570,
0.1677, 0.4498, -0.8081, -0.1912, 0.4066, -0.1794, -0.1089, 0.7038,
-1.1204, 1.4453, -0.5261, -0.2537, 0.2954, 0.0537, 1.1032, -1.6995,
-0.8658, 0.0069, -0.7864, -0.5945, 0.3836, -0.8819, -0.7932, 0.7809,
-0.5035, 0.1249, -0.7372, -0.0023, 0.1401, 1.6874, -0.5839, 0.0617,
-0.3735, 0.1255, 0.8500, 0.1772, -0.2503, -0.9388, 0.4660, 0.0778,
-0.2575, 0.9906, -0.6868, -0.1666, 1.5679, -0.1536, -0.6431, 0.2470,
-0.6598, -0.3674, 1.2074, -0.5786, -1.2000, 0.5436, -0.9324, -0.1678,
0.2622, 0.2365, -1.1233, -0.0316, 0.4280, -0.6036, -0.1521, 0.8521,
-1.2506, 0.0447, -0.2429, -0.5794, 0.2477, -0.2386, -0.4713, -0.8464,
-0.6100, 0.0416, -0.9101, 0.4154, -1.1316, -0.3032, 0.2720, 0.0818,
-0.1726, 0.6396, 0.2227, -0.6746, 1.4707, 0.2891, 0.4319, 1.3665,
-1.0922, 0.2068, 0.2742, 0.5250, 0.6502, -0.8084, -0.5297, -0.3780,
-0.3048, 0.3210, -0.4358, 0.7772, -0.4798, -0.2714, -0.4301, -0.1023,
-0.8924, -0.4756, -0.9159, -0.6420, 0.2500, 0.6301, -0.3656, -0.3115,
-0.3092, -0.6765, 0.2568, -0.1190, -0.3246, -0.7433, 1.3411, 0.2621,
0.6059, -1.6666, 0.5171, 0.9830, 0.4238, 0.9399, -0.2219, 0.1042,
0.6885, -0.1398, 1.0048, 0.8237, 0.5311, 0.2481, -1.1185, -0.3169,
-0.4606, 0.2594, 0.5915, -0.0420, 0.0353, 0.5132, -0.1115, 0.1641,
0.6328, 0.0220, -0.1134, 0.3487, 0.7037, 0.1949, 0.9965, -0.3493,
-0.1531, 0.3266, 0.3365, -0.9098, 0.6647, -0.4036, 0.6309, 0.2539,
-0.6655, 0.2219, 1.3017, -0.2910, 0.0077, -0.1615, -0.0499, -1.0351,
0.0631, 0.0526, -0.2282, 0.7903, -0.2692, -0.8018, 0.0425, -0.6413,
-0.7523, -1.5698, -0.5256, -0.3538, 1.2565, 1.2090, 0.0132, -0.8184,
1.1792, -0.4623, -0.1368, -0.1340, -0.4158, -0.3891, -0.6368, -0.6716,
0.1764, -0.6001, 0.3692, 0.1826, 0.3553, -0.4659, -0.0166, -0.2227,
0.0605, -0.1283, 0.4476, -0.2427, 0.7576, 0.8014, -0.1844, 0.4134,
-0.3707, -0.5320, -0.2180, -0.7385, 0.5511, -1.1440, 0.7495, -0.1902,
0.1369, 0.2095, -0.4616, -0.2702, -0.6023, -0.1063, -0.1010, 0.4664,
-0.4199, 0.6815, 0.1581, 0.1553, -0.3236, -0.3660, -0.0891, -0.0942,
-0.8452, -1.1930, -0.7743, -0.8862, -0.5736, -0.9316, -0.1222, -0.4710,
-0.4420, -0.5289, -0.7370, -0.4200, 0.8102, 0.1068, 0.6879, 0.9414,
-1.0126, -0.6519, 0.4527, 0.3266, 0.4081, 0.1996, -0.0257, 0.1841,
-0.4881, -0.8573, 0.5010, -0.4788, -0.6908, 0.3824, -0.2642, -0.6462,
0.2921, 0.8192, 0.6443, 0.5318, 0.8571, 0.5193, -0.0748, -0.0666,
0.2659, 0.2960, -0.2691, -1.3030, -0.7433, 0.2877, -0.6012, -0.6165,
-0.1664, -0.4276, 0.7057, -0.4753, 0.9193, -0.0858, 0.4529, 0.0187,
0.5288, -0.0120, -0.2770, 0.4051, 0.0486, -0.2863, 0.7978, -0.1046,
0.5071, -0.2378, 0.0393, -0.4039, 1.1442, -0.6032, 0.6462, 0.2437,
0.6592, -0.1853, -0.3932, 0.1069, -0.3172, 0.0439, -0.0894, -0.7581,
0.8185, -0.6686, -0.7607, -0.0244, 0.0612, -0.3434, 0.4846, 0.3707,
-0.1968, 0.7238, 0.0380, -0.1852, -0.0509, 0.0693, -0.2527, -0.7352,
-0.6229, 0.4219, -0.8397, 0.0265, 0.6799, 0.2732, 0.8133, 0.5658,
0.4521, 0.2094, -0.1233, 0.2853, -0.4095, -0.0043, 0.0443, -0.1329,
0.1748, -0.3173, 0.4919, -0.2481, -0.4752, -0.3148, -0.4381, -0.8508,
0.4462, 0.6670, 0.3655, 2.1904, 0.3760, -0.1575, -0.4121, -0.8432,
0.2034, 0.7576, 0.4390, 0.1646, 0.1873, -0.3555, 0.8141, -1.1400,
-0.9080, 0.8897, 1.0261, -0.0397, 0.0434, -0.5660, 0.4741, 0.0463,
0.6119, -0.7441, -0.1215, -0.3012, 0.5099, -1.2163, -0.3103, -0.4813,
-0.3444, 0.2921, -0.9768, 0.4538, 0.6191, 0.8799, -0.3835, -0.0057,
0.2141, 0.0442, -0.3738, 0.4000, -0.9016, 0.0222, 1.1992, 0.7037,
-0.2133, 0.1393, 1.4536, -0.3438, 0.6417, 0.1219, 0.4277, -0.1041,
0.1900, 0.0222, -0.2329, -0.0655, 0.3298, -0.8072, 0.1152, -0.0886,
-0.0550, -0.1536, -0.0492, -0.2500, -0.2076, -0.3855, 0.8968, 0.2879,
0.5730, 0.1542, -0.6952, 0.6044, -0.0396, 0.6409, 1.0697, -0.5936,
-1.0671, -0.1631, -0.0559, -0.6267, -0.1045, 0.4992, -1.1814, -0.3745,
0.1148, 1.2093, 0.6348, -0.0950, 0.6317, 0.3497, 0.9094, 0.2639,
0.2698, -0.5232, 0.2271, -0.1841, -1.1478, 0.1940, 0.1754, 0.5913,
-0.1162, -0.2418, 0.2757, 0.5607, -0.3401, -0.2242, -0.5553, 0.7191,
1.1865, 0.4946, -0.0032, -0.3131, 0.4494, 0.2746, -0.0319, -0.8218,
-0.1342, 0.2442, -0.5747, -0.1053, 0.5896, -0.8873, -0.6665, 0.5551,
0.0782, 0.3987, 0.3041, 0.6591, -0.1150, -1.2871, 0.3905, 0.1369,
-0.7377, 0.9123, -0.2117, 0.4595, 0.6514, 0.4681, -0.2784, 0.0099,
-0.4514, -0.3678, -0.2100, 0.5424, 0.7370, -0.5189, 0.2916, 0.0367,
0.7997, 0.2482, -1.2903, 0.3780, 0.6159, -0.1243, -0.6554, 0.9334,
0.2720, -0.3412, 0.5984, -0.8122, -0.6410, 0.4535, 0.1734, -0.3975,
-0.8048, 0.4323, 0.4416, -0.0587, 0.3416, 0.5949, 0.9841, 0.6708,
-0.4209, -0.2902, 0.4471, -0.6019, -0.3284, 0.7052, -0.3894, 0.2325,
-0.1371, -0.0458, 0.2366, 0.6565, -0.6877, -0.4468, -0.0416, 0.1399,
0.3912, -0.5745, -0.5798, 0.3441, 0.4783, 0.6710, 1.5530, -0.2175,
0.2798, 0.7343, 0.2631, -0.1522, -0.0929, -0.7242, -0.1866, 0.4094,
0.9072, 0.7748, -0.9727, 0.2121, 0.6975, 0.5502, -1.5739, -0.1935,
0.2408, -0.9197, 0.8733, 0.1751, -1.6064, -0.8624, 0.3407, 0.1941,
0.2186, 1.0303, 0.9977, 0.9978, 0.5819, 0.3241, -0.0397, -0.0729,
-0.2124, 0.6568, 0.3392, 0.5155, -0.0025, -1.6329, 0.0523, 0.0961,
-1.1520, 0.9825, -0.1009, 0.3857, -0.6765, 0.2406, 0.7285, -0.1881,
0.3678, 0.4719, -0.5791, 0.2218, 0.6020, 0.3131, 0.2334, -0.5597,
0.7021, 0.0916, -0.0537, -1.1107, -1.3456, 0.1169, 0.2511, 0.0659,
0.3046, -0.7241, -0.0933, 0.8756, -1.0751, 0.0476, 0.7796, 0.3287,
0.5448, -0.9035, 0.5777, -0.7859, 0.4341, 1.1255, 0.4447, 0.2046,
0.6836, 0.7843, 0.9051, 0.4812, 0.2248, -0.3002, -0.2056, 0.0062,
0.6319, -0.6192, 0.1192, 0.6877, -0.1505, -0.5901, 1.1053, -0.4244,
1.2949, -0.0225, -0.7752, 0.4802, -0.8232, 0.6852, -0.3668, 0.5570,
0.6362, 0.1484, -0.1976, 0.1145, 0.4329, -0.3728, -0.0098, -0.1347,
-0.1296, -0.8788, -0.9397, -0.9967, 0.3410, -0.5902, 0.2272, 0.4113,
0.5386, -0.0544, -0.4600, -0.4375, -0.4247, -0.0638, -0.3998, -0.8774,
-0.0317, 0.4021, -0.8222, -0.4809, -1.1616, 0.8198, -0.0503, 0.5451,
-0.4983, 0.1550, -0.8350, -0.2284, 0.8163, 0.3057, -0.1393, -0.8876,
-0.1237, 0.0322, 0.0652, 0.0870, -1.2977, -0.2600, 0.3764, 0.2252,
-0.4700, 0.8265, -0.3017, -0.7971, -0.6706, 0.1718, 0.0871, -1.4964,
-0.5555, 0.2503, -0.5699, -0.6307, -0.1777, 0.0038, -1.1909, -0.9936,
0.8798, 0.3346, -0.5728, -1.2314, -0.4099, 0.3378, 0.7328, -0.1436,
-0.1719, 0.0340, -1.2943, -0.0104, 1.0345, 0.2331, 0.0599, 0.6879,
-0.7434, -0.5223, 0.2352, -0.9593, 0.0825, -0.5867, 0.5346, 0.7509,
0.8674, -0.9182, 0.3365, 0.1850, -1.1668, -1.2389, -0.3753, -0.1050,
-0.0569, 0.1062, 0.7333, 0.0465, 1.0837, 0.6633, -1.7137, -0.5974,
0.4209, -0.3124, 0.3935, 0.5566, -0.0534, -0.1313, -0.4815, 0.7935,
0.3970, -1.2496, -0.3091, -1.0784, 0.4957, 0.4002, 0.3540, -1.6088,
-0.6770, 0.7959, -0.7764, 0.7647, 0.2016, 0.3960, 0.1153, 0.3679,
0.4652, -0.1590, -0.3743, -0.0253, -0.1515, -0.7036, -0.8022, -0.2377,
-0.4536, 0.2447, 0.2165, 0.0511, -1.0900, -0.3818, -0.9283, 0.4730,
0.4143, 0.0216, 0.1163, -0.1247, 0.2278, -0.6479, -0.5509, 0.5441,
0.2503, -0.0678, 0.8512, 0.3365, -0.5701, 0.1218, 0.2744, -0.7122]],
grad_fn=<AddmmBackward>)
Process finished with exit code 0
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
- 148.
- 149.
- 150.
- 151.
- 152.
- 153.
- 154.
- 155.
- 156.
- 157.
- 158.
- 159.
- 160.
- 161.
- 162.
- 163.
- 164.
- 165.
- 166.
- 167.
- 168.
- 169.
- 170.
- 171.
- 172.
- 173.
- 174.
- 175.
- 176.
- 177.
- 178.
- 179.
- 180.
- 181.
- 182.
- 183.
- 184.
- 185.
- 186.
- 187.
- 188.
- 189.
- 190.
- 191.
- 192.
- 193.
- 194.
- 195.
- 196.
- 197.
- 198.
- 199.
- 200.
- 201.
- 202.
- 203.
- 204.
- 205.
- 206.
- 207.
- 208.
- 209.
- 210.
- 211.
- 212.
- 213.
- 214.
- 215.
- 216.
- 217.
- 218.
- 219.
- 220.
- 221.
- 222.
- 223.
- 224.
- 225.
- 226.
- 227.
- 228.
- 229.
- 230.
- 231.
- 232.
- 233.
- 234.
- 235.
- 236.
- 237.
- 238.
- 239.
- 240.
- 241.
- 242.
- 243.
- 244.
- 245.
- 246.
- 247.
- 248.
- 249.
- 250.
- 251.
- 252.
- 253.
- 254.
- 255.
- 256.
- 257.
- 258.
- 259.
- 260.
- 261.
- 262.
- 263.
- 264.
- 265.
- 266.
- 267.
- 268.
- 269.
- 270.
- 271.
- 272.
- 273.
- 274.
- 275.
- 276.
- 277.
- 278.
- 279.
- 280.
- 281.
- 282.
- 283.
- 284.
- 285.
- 286.
- 287.
- 288.
- 289.
- 290.
- 291.
- 292.
- 293.
- 294.
- 295.
- 296.
- 297.
- 298.
- 299.
- 300.
- 301.
- 302.
- 303.
- 304.
- 305.
- 306.
- 307.
- 308.
- 309.
- 310.
- 311.
- 312.
- 313.
- 314.
- 315.
- 316.
- 317.
- 318.
- 319.
- 320.
- 321.
- 322.
- 323.
- 324.
- 325.
- 326.
- 327.
- 328.
- 329.
- 330.
View Code
author : Your Rego
The copyright of this article belongs to the author , Welcome to reprint , But without the author's consent, the original link must be given on the article page , Otherwise, the right to pursue legal responsibility is reserved .
边栏推荐
- 100 questions for an enterprise architect interview
- 本地可视化工具连接阿里云centOS服务器的redis
- flutter系列之:flutter中的变形金刚Transform
- How to select documents for literature review? For example, I can't finish reading more than 200 search results. How to select documents
- Excel print settings public header
- 撰写外文时怎样引用中文文献?
- [digital ic/fpga] detect the position of the last matching sequence
- C# Winform 读取Resources图片
- 虽然TCGA数据库有33种癌症
- Detailed explanation of MATLAB axis coordinate axis related settings
猜你喜欢

【微服务|Sentinel】sentinel数据持久化

Golang - the difference between new and make

c语言之字符串数组

【PCL自学:PCLVisualizer】点云可视化工具PCLVisualizer

Usage of vivado vio IP

Vivado FFT IP的使用说明

ASP.NET仓库进销存ERP管理系统源码 ERP小程序源码

零基础自学SQL课程 | CASE函数
![[tinyriscv verilator] branch transplanted to Da Vinci development board of punctual atom](/img/a8/4786e82d0646b08c195dd0a17af227.png)
[tinyriscv verilator] branch transplanted to Da Vinci development board of punctual atom

2022年PMP项目管理考试敏捷知识点(3)
随机推荐
MySQL企业级参数调优实践分享
Online JSON to plaintext tool
EXCEL 打印设置公共表头
Storage structure of graph
VirtualBox extended dynamic disk size pit
halcon之区域:多种区域(Region)特征(6)
Swing UI container (I)
[AI application] detailed parameters of NVIDIA geforce RTX 1080ti
How to set the enterprise wechat group robots to send messages regularly?
Golang uses Mongo driver operation -- Query (array related)
【AI应用】NVIDIA Tesla V100S-PCIE-32GB的详情参数
[从零开始学习FPGA编程-48]:视野篇 - 智能传感器的发展与应用
Is not null and in SQL= Difference between null
[AI application] detailed parameters of NVIDIA geforce RTX 3060
零基础自学SQL课程 | SQL基本函数大全
[AI application] detailed parameters of Jetson Xavier nx
圖的存儲結構
本地可视化工具连接阿里云centOS服务器的redis
Is it safe to open a stock account through the account opening QR code of CICC securities manager? Or is it safe to open an account in a securities company?
golang使用mongo-driver操作——查(数组相关)