当前位置:网站首页>图论的扩展
图论的扩展
2022-07-06 04:43:00 【Zqchang】
超级源点
这个题目就是模板题
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010, M = 20010, INF = 0x3f3f3f3f;
int n, m, T;
int h[N], e[M], w[M], ne[M], idx;
int dist[N], q[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void spfa()
{
int scnt;
scanf("%d", &scnt);
memset(dist, 0x3f, sizeof dist);
int hh = 0, tt = 0;
while (scnt -- )
{
int u;
scanf("%d", &u);
dist[u] = 0;
q[tt ++ ] = u;
st[u] = true;
}
while (hh != tt)
{
int t = q[hh ++ ];
if (hh == N) hh = 0;
st[t] = false;
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j])
{
q[tt ++ ] = j;
if (tt == N) tt = 0;
st[j] = true;
}
}
}
}
}
int main()
{
while (scanf("%d%d%d", &n, &m, &T) != -1)
{
memset(h, -1, sizeof h);
idx = 0;
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
spfa();
if (dist[T] == INF) dist[T] = -1;
printf("%d\n", dist[T]);
}
return 0;
}
拆点(分层图)
拯救大兵瑞恩
state是状压那个感觉
拆点其实就是多了一维状态,加了一些限制
在最短路中,所有需要拆点或者分层的问题,都可以先用dp的分析方式来考虑,另一种就是,考虑一下当前这个状态,可以用来更新哪些状态。
所有最短路里面的问题,用第二种比较直观,因为第二种和最短路模型更加接近
也就是考虑当前状态可以更新哪些状态
多一把钥匙是肯定不亏的,所以有钥匙就用钥匙
dp中状态计算有两种方式,第一种是算一下当前这个状态,可以由哪些状态变过来
虽然能用dp的思想来想,但是不能用dp的思想来做,因为dp需要有个拓扑序,但是这个题目中可能存在环
dp可以看成拓扑图上的最短路
这样就可以看作在图中只有0和1两种权值,进而可以用双端队列广搜
跑最短路的时候,为了方便,可以把一个两维坐标映射成一维,如图
#include <cstring>
#include <iostream>
#include <algorithm>
#include <deque>
#include <set>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 11, M = 360, P = 1 << 10;
int n, m, k, p;
int h[N * N], e[M], w[M], ne[M], idx;
int g[N][N], key[N * N];//给点定编号,记录钥匙所在的地方
int dist[N * N][P];//记录一下这个点的这个状态所用的最小步数
bool st[N * N][P];//判断这个点的这个状态有没有用过
set<PII> edges;
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void build()
{
int dx[4] = {
-1, 0, 1, 0}, dy[4] = {
0, 1, 0, -1};
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
for (int u = 0; u < 4; u ++ )
{
int x = i + dx[u], y = j + dy[u];
if (!x || x > n || !y || y > m) continue;
int a = g[i][j], b = g[x][y];
if (!edges.count({
a, b})) add(a, b, 0);//没有门和墙,有一个双向边
}
}
int bfs()
{
memset(dist, 0x3f, sizeof dist);
dist[1][0] = 0;
deque<PII> q;
q.push_back({
1, 0});
while (q.size())
{
PII t = q.front();
q.pop_front();
if (st[t.x][t.y]) continue;
st[t.x][t.y] = true;
if (t.x == n * m) return dist[t.x][t.y];
if (key[t.x])
{
int state = t.y | key[t.x];
if (dist[t.x][state] > dist[t.x][t.y])
{
dist[t.x][state] = dist[t.x][t.y];
q.push_front({
t.x, state});
}
}
for (int i = h[t.x]; ~i; i = ne[i])
{
int j = e[i];
if (w[i] && !(t.y >> w[i] - 1 & 1)) continue; // 有门并且没有钥匙
if (dist[j][t.y] > dist[t.x][t.y] + 1)
{
dist[j][t.y] = dist[t.x][t.y] + 1;
q.push_back({
j, t.y});
}
}
}
return -1;
}
int main()
{
cin >> n >> m >> p >> k;
for (int i = 1, t = 1; i <= n; i ++ )//初始化节点编号
for (int j = 1; j <= m; j ++ )
g[i][j] = t ++ ;
memset(h, -1, sizeof h);
while (k -- )
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
int a = g[x1][y1], b = g[x2][y2];//找到两点对应的编号
edges.insert({
a, b}), edges.insert({
b, a});//表示这里有一个墙或者门了
if (c) add(a, b, c), add(b, a, c);//建门,墙的话是不能通过的,所以只标记一下,并不建边
}
build();//建立剩余的边
int s;
cin >> s;
while (s -- )
{
int x, y, c;
cin >> x >> y >> c;
key[g[x][y]] |= 1 << c - 1;//记录钥匙
}
cout << bfs() << endl;
return 0;
}
使用dp的思想计数类
dp可以粗略看成是最短路在拓扑图上进行跑
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 400010, mod = 100003;
int n, m;
int h[N], e[M], ne[M], idx;
int dist[N], cnt[N];
int q[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void bfs()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
cnt[1] = 1;
int hh = 0, tt = 0;
q[0] = 1;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + 1)
{
dist[j] = dist[t] + 1;
cnt[j] = cnt[t];
q[ ++ tt] = j;
}
else if (dist[j] == dist[t] + 1)//这里可以看成状态转移方程式
{
cnt[j] = (cnt[j] + cnt[t]) % mod;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m -- )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
bfs();
for (int i = 1; i <= n; i ++ ) printf("%d\n", cnt[i]);
return 0;
}
这个题目题意大概是,给你起点和终点,问你最多有多少条最短路,如果次短路就比最短路多1,那么还要加上次短路的条数
多开了一维存储次短路,然后像dp一样在dij里面进行更新
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010, M = 20010;
struct Ver
{
int id, type, dist;
bool operator> (const Ver &W) const
{
return dist > W.dist;
}
};
int n, m, S, T;
int h[N], e[M], w[M], ne[M], idx;
int dist[N][2], cnt[N][2];
bool st[N][2];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int dijkstra()
{
memset(st, 0, sizeof st);
memset(dist, 0x3f, sizeof dist);
memset(cnt, 0, sizeof cnt);
dist[S][0] = 0, cnt[S][0] = 1;
priority_queue<Ver, vector<Ver>, greater<Ver>> heap;
heap.push({
S, 0, 0});
while (heap.size())
{
Ver t = heap.top();
heap.pop();
int ver = t.id, type = t.type, distance = t.dist, count = cnt[ver][type];
if (st[ver][type]) continue;
st[ver][type] = true;
for (int i = h[ver]; ~i; i = ne[i])
{
int j = e[i];
if (dist[j][0] > distance + w[i])
{
dist[j][1] = dist[j][0], cnt[j][1] = cnt[j][0];
heap.push({
j, 1, dist[j][1]});
dist[j][0] = distance + w[i], cnt[j][0] = count;
heap.push({
j, 0, dist[j][0]});
}
else if (dist[j][0] == distance + w[i]) cnt[j][0] += count;
else if (dist[j][1] > distance + w[i])
{
dist[j][1] = distance + w[i], cnt[j][1] = count;
heap.push({
j, 1, dist[j][1]});
}
else if (dist[j][1] == distance + w[i]) cnt[j][1] += count;
}
}
int res = cnt[T][0];
if (dist[T][0] + 1 == dist[T][1]) res += cnt[T][1];
return res;
}
int main()
{
int cases;
scanf("%d", &cases);
while (cases -- )
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
idx = 0;
while (m -- )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
scanf("%d%d", &S, &T);
printf("%d\n", dijkstra());
}
return 0;
}
边栏推荐
- After learning classes and objects, I wrote a date class
- Jd.com 2: how to prevent oversold in the deduction process of commodity inventory?
- CADD课程学习(7)-- 模拟靶点和小分子相互作用 (柔性对接 AutoDock)
- View workflow
- 【HBZ分享】ArrayList的增删慢查询快的原因
- web工程导入了mysql驱动jar包却无法加载到驱动的问题
- flink sql 能同时读多个topic吗。with里怎么写
- Word cover underline
- Bill Gates posted his 18-year-old resume and expected an annual salary of $12000 48 years ago
- 也算是學習中的小總結
猜你喜欢
![[face recognition series] | realize automatic makeup](/img/a5/de98d0522b9dae809cd242aac305b3.jpg)
[face recognition series] | realize automatic makeup

Introduction of several RS485 isolated communication schemes

CADD course learning (8) -- virtual screening of Compound Library

SQL注入漏洞(MSSQL注入)

Uva1592 Database

Easyrecovery靠谱不收费的数据恢复电脑软件

麦斯克电子IPO被终止:曾拟募资8亿 河南资产是股东

比尔·盖茨晒18岁个人简历,48年前期望年薪1.2万美元

DMA use of stm32
![[05-1, 05-02, 05-03] network protocol](/img/25/2e9ccc3f31a1fd46c9ab643d48064b.jpg)
[05-1, 05-02, 05-03] network protocol
随机推荐
[FreeRTOS interrupt experiment]
麦斯克电子IPO被终止:曾拟募资8亿 河南资产是股东
Meet diverse needs: jetmade creates three one-stop development packages to help efficient development
Dynamic programming (tree DP)
Redis has four methods for checking big keys, which are necessary for optimization
Implementation of knowledge consolidation source code 2: TCP server receives and processes half packets and sticky packets
Guitar Pro 8.0最详细全面的更新内容及全部功能介绍
Vulnerability discovery - vulnerability probe type utilization and repair of web applications
It is also a small summary in learning
Easyrecovery reliable and toll free data recovery computer software
Luogu deep foundation part 1 Introduction to language Chapter 2 sequential structure programming
饼干(考试版)
CADD课程学习(7)-- 模拟靶点和小分子相互作用 (柔性对接 AutoDock)
View 工作流程
canal同步mysql数据变化到kafka(centos部署)
Postman测试报告
关于imx8mp的es8316的芯片调试
[Yu Yue education] reference materials of complex variable function and integral transformation of Northwestern Polytechnic University
Redis —— Redis In Action —— Redis 实战—— 实战篇一 —— 基于 Redis 的短信登录功能 —— Redis + Token 的共享 session 应用— 有代码
Implementation of knowledge consolidation source code 1: epoll implementation of TCP server