当前位置:网站首页>GEE(四):计算两个变量(影像)之间的相关性并绘制散点图
GEE(四):计算两个变量(影像)之间的相关性并绘制散点图
2022-07-07 21:50:00 【BetterQ.】
最近使用Google Earth Engine(GEE)分析了一下高程和NDVI的相关性,并绘制二者的散点图,计算其决定系数。
计算时主要用到了GEE中的图表 ui.Chart.image.byRegion()
,将研究区域内的高程和NDVI的散点图先绘制出来,再添加趋势线,计算决定系数,就可以知道二者之间的相关性有多高。
NDVI-高程散点图及决定系数计算实现代码如下:
//研究区域,可自己绘制或导入
var roi = /* color: #d63000 */ee.Geometry.Polygon(
[[[104.34385678174718, 27.233899188878446],
[114.80284115674718, 28.477166904461537],
[117.52745053174718, 34.61402019968164],
[111.99034115674718, 40.99546927185892],
[95.11534115674718, 37.87379212761336]]]);
//导入 DEM
var DEM=ee.Image("CGIAR/SRTM90_V4").reproject('SR-ORG:6974',null,500);
//从DEM中抽取样本点,这里选取500个
var rroi = DEM.sample(
{
region: roi, scale: 30, numPixels: 500, geometries: true});
//导入NDVI数据
var ndvi=ee.ImageCollection('MODIS/006/MOD13A1')
.filter(ee.Filter.date('2020-01-01', '2020-02-01'))
.first()
.multiply(0.0001);
// 设置图表属性,包括样式颜色等
var chartStyle = {
title: 'NDVI-DEM',
hAxis: {
title: 'elevation',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'}
},
vAxis: {
title: 'NDVI',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'},
},
pointSize: 4,
dataOpacity: 0.6,
chartArea: {
backgroundColor: 'EBEBEB'},
//添加趋势线
trendlines: {
0: {
// add a trend line to the 1st series
type: 'polynomial', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //show R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}
};
//绘制散点图
var charten=ui.Chart.image.byRegion({
image:ndvi.select('NDVI'),
regions:rroi,
reducer:ee.Reducer.mean(),
scale:500,
xProperty: 'elevation'
});
charten.setChartType('ScatterChart').setOptions(chartStyle);
print(charten)
结果如图所示:
.
.
.
.
这里还做了温度和高程之间的关系,实现代码:
// Load SRTM elevation data.
var elev = ee.Image('CGIAR/SRTM90_V4').select('elevation');
// Subset Colorado from the TIGER States feature collection.
var colorado = ee.FeatureCollection('TIGER/2018/States')
.filter(ee.Filter.eq('NAME', 'Colorado'));
// Draw a random sample of elevation points from within Colorado.
var samp = elev.sample(
{
region: colorado, scale: 30, numPixels: 500, geometries: true});
// Load PRISM climate normals image collection; convert images to bands.
var normClim = ee.ImageCollection('OREGONSTATE/PRISM/Norm81m').toBands();
// Define the chart and print it to the console.
var chartte = ui.Chart.image
.byRegion({
image: normClim.select(['01_tmean', '07_tmean']),
regions: samp,
reducer: ee.Reducer.mean(),
scale: 500,
xProperty: 'elevation'
})
.setSeriesNames(['Jan', 'Jul'])
.setChartType('ScatterChart')
.setOptions({
title: 'Average Monthly Colorado Temperature by Elevation',
hAxis: {
title: 'Elevation (m)',
titleTextStyle: {
italic: false, bold: true}
},
vAxis: {
title: 'Temperature (°C)',
titleTextStyle: {
italic: false, bold: true}
},
pointSize: 4,
dataOpacity: 0.6,
colors: ['1d6b99', 'cf513e'],
trendlines: {
0: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
},
1: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}});
print(chartte);
.
结果如图:
.
.
.
.
以及绘制植被指数随时间变化的曲线图:
// Import the example feature collection and subset the glassland feature.
var grassland = ee.FeatureCollection('projects/google/charts_feature_example')
.filter(ee.Filter.eq('label', 'Grassland'));
// Load MODIS vegetation indices data and subset a decade of images.
var vegIndices = ee.ImageCollection('MODIS/006/MOD13A1')
.filter(ee.Filter.date('2010-01-01', '2020-01-01'))
.select(['NDVI', 'EVI']);
// Set chart style properties.
var chartStyle = {
title: 'Average Vegetation Index Value by Day of Year for Grassland',
hAxis: {
title: 'Day of year',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'}
},
vAxis: {
title: 'Vegetation index (x1e4)',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'},
format: 'short',
baselineColor: 'FFFFFF'
},
series: {
0: {
lineWidth: 3, color: 'E37D05', pointSize: 7},
1: {
lineWidth: 7, color: '1D6B99', lineDashStyle: [4, 4]}
},
chartArea: {
backgroundColor: 'EBEBEB'},
trendlines: {
0: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true',
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}
};
// Define the chart.
var chart =
ui.Chart.image
.doySeries({
imageCollection: vegIndices,
region: grassland,
regionReducer: ee.Reducer.mean(),
scale: 500,
yearReducer: ee.Reducer.mean(),
startDay: 1,
endDay: 365
})
.setSeriesNames(['EVI', 'NDVI']);
// Apply custom style properties to the chart.
chart.setOptions(chartStyle);
// Print the chart to the console.
print(chart);
边栏推荐
- 2021-01-11
- Debezium系列之:支持 mysql8 的 set role 語句
- Digital transformation: five steps to promote enterprise progress
- Line test graph reasoning graph group class
- Debezium series: support the use of variables in the Kill Command
- Unity and webgl love each other
- 肠道里的微生物和皮肤上的一样吗?
- 筑起云端 “免疫”屏障,让你的数据有备无患
- One question per day - pat grade B 1002 questions
- 全面掌控!打造智慧城市建设的“领导驾驶舱”
猜你喜欢
There is another problem just online... Warm
聊聊 Dart 的空安全 (null safety) 特性
Leetcode interview question 02.07 Linked list intersection [double pointer]
How to operate DTC community?
The author of LinkedList said he didn't use LinkedList himself
ASEMI整流桥KBPC1510的型号数字代表什么
Loki, the "open source star picking program", realizes the efficient management of harbor logs
GBU1510-ASEMI电源专用15A整流桥GBU1510
今日创见|企业促进创新的5大关键要素
面试百问:如何测试App性能?
随机推荐
I wish you all the best and the year of the tiger
「开源摘星计划」Loki实现Harbor日志的高效管理
7-18 simple simulation of banking business queue
Basic knowledge of linked list
微生物健康网,如何恢复微生物群落
XMIND mind mapping software sharing
Micro service remote debug, nocalhost + rainbow micro service development second bullet
安踏DTC | 安踏转型,构建不只有FILA的增长飞轮
Innovation today | five key elements for enterprises to promote innovation
OC variable parameter transfer
How to operate DTC community?
Leetcode1984. Minimum difference in student scores
Line test graph reasoning graph group class
Txt file virus
小程序多种开发方式对比-跨端?低代码?原生?还是云开发?
Line test - graphic reasoning - 1 - Chinese character class
What does the model number of asemi rectifier bridge kbpc1510 represent
关于海康ipc的几个参数
Cases of agile innovation and transformation of consumer goods enterprises
Cascade-LSTM: A Tree-Structured Neural Classifier for Detecting Misinformation Cascades-KDD2020