当前位置:网站首页>GEE(四):计算两个变量(影像)之间的相关性并绘制散点图
GEE(四):计算两个变量(影像)之间的相关性并绘制散点图
2022-07-07 21:50:00 【BetterQ.】
最近使用Google Earth Engine(GEE)分析了一下高程和NDVI的相关性,并绘制二者的散点图,计算其决定系数。
计算时主要用到了GEE中的图表 ui.Chart.image.byRegion(),将研究区域内的高程和NDVI的散点图先绘制出来,再添加趋势线,计算决定系数,就可以知道二者之间的相关性有多高。
NDVI-高程散点图及决定系数计算实现代码如下:
//研究区域,可自己绘制或导入
var roi = /* color: #d63000 */ee.Geometry.Polygon(
[[[104.34385678174718, 27.233899188878446],
[114.80284115674718, 28.477166904461537],
[117.52745053174718, 34.61402019968164],
[111.99034115674718, 40.99546927185892],
[95.11534115674718, 37.87379212761336]]]);
//导入 DEM
var DEM=ee.Image("CGIAR/SRTM90_V4").reproject('SR-ORG:6974',null,500);
//从DEM中抽取样本点,这里选取500个
var rroi = DEM.sample(
{
region: roi, scale: 30, numPixels: 500, geometries: true});
//导入NDVI数据
var ndvi=ee.ImageCollection('MODIS/006/MOD13A1')
.filter(ee.Filter.date('2020-01-01', '2020-02-01'))
.first()
.multiply(0.0001);
// 设置图表属性,包括样式颜色等
var chartStyle = {
title: 'NDVI-DEM',
hAxis: {
title: 'elevation',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'}
},
vAxis: {
title: 'NDVI',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'},
},
pointSize: 4,
dataOpacity: 0.6,
chartArea: {
backgroundColor: 'EBEBEB'},
//添加趋势线
trendlines: {
0: {
// add a trend line to the 1st series
type: 'polynomial', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //show R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}
};
//绘制散点图
var charten=ui.Chart.image.byRegion({
image:ndvi.select('NDVI'),
regions:rroi,
reducer:ee.Reducer.mean(),
scale:500,
xProperty: 'elevation'
});
charten.setChartType('ScatterChart').setOptions(chartStyle);
print(charten)
结果如图所示:
.
.
.
.
这里还做了温度和高程之间的关系,实现代码:
// Load SRTM elevation data.
var elev = ee.Image('CGIAR/SRTM90_V4').select('elevation');
// Subset Colorado from the TIGER States feature collection.
var colorado = ee.FeatureCollection('TIGER/2018/States')
.filter(ee.Filter.eq('NAME', 'Colorado'));
// Draw a random sample of elevation points from within Colorado.
var samp = elev.sample(
{
region: colorado, scale: 30, numPixels: 500, geometries: true});
// Load PRISM climate normals image collection; convert images to bands.
var normClim = ee.ImageCollection('OREGONSTATE/PRISM/Norm81m').toBands();
// Define the chart and print it to the console.
var chartte = ui.Chart.image
.byRegion({
image: normClim.select(['01_tmean', '07_tmean']),
regions: samp,
reducer: ee.Reducer.mean(),
scale: 500,
xProperty: 'elevation'
})
.setSeriesNames(['Jan', 'Jul'])
.setChartType('ScatterChart')
.setOptions({
title: 'Average Monthly Colorado Temperature by Elevation',
hAxis: {
title: 'Elevation (m)',
titleTextStyle: {
italic: false, bold: true}
},
vAxis: {
title: 'Temperature (°C)',
titleTextStyle: {
italic: false, bold: true}
},
pointSize: 4,
dataOpacity: 0.6,
colors: ['1d6b99', 'cf513e'],
trendlines: {
0: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
},
1: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true', //R2 cofficient
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}});
print(chartte);
.
结果如图:
.
.
.
.
以及绘制植被指数随时间变化的曲线图:
// Import the example feature collection and subset the glassland feature.
var grassland = ee.FeatureCollection('projects/google/charts_feature_example')
.filter(ee.Filter.eq('label', 'Grassland'));
// Load MODIS vegetation indices data and subset a decade of images.
var vegIndices = ee.ImageCollection('MODIS/006/MOD13A1')
.filter(ee.Filter.date('2010-01-01', '2020-01-01'))
.select(['NDVI', 'EVI']);
// Set chart style properties.
var chartStyle = {
title: 'Average Vegetation Index Value by Day of Year for Grassland',
hAxis: {
title: 'Day of year',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'}
},
vAxis: {
title: 'Vegetation index (x1e4)',
titleTextStyle: {
italic: false, bold: true},
gridlines: {
color: 'FFFFFF'},
format: 'short',
baselineColor: 'FFFFFF'
},
series: {
0: {
lineWidth: 3, color: 'E37D05', pointSize: 7},
1: {
lineWidth: 7, color: '1D6B99', lineDashStyle: [4, 4]}
},
chartArea: {
backgroundColor: 'EBEBEB'},
trendlines: {
0: {
// add a trend line to the 1st series
type: 'linear', // or 'polynomial', 'exponential'
color: 'green',
showR2:'true',
lineWidth: 5,
opacity: 0.2,
visibleInLegend: true,
}
}
};
// Define the chart.
var chart =
ui.Chart.image
.doySeries({
imageCollection: vegIndices,
region: grassland,
regionReducer: ee.Reducer.mean(),
scale: 500,
yearReducer: ee.Reducer.mean(),
startDay: 1,
endDay: 365
})
.setSeriesNames(['EVI', 'NDVI']);
// Apply custom style properties to the chart.
chart.setOptions(chartStyle);
// Print the chart to the console.
print(chart);

边栏推荐
- 三菱PLC slmp(mc)协议
- 筑起云端 “免疫”屏障,让你的数据有备无患
- 6-3 find the table length of the linked table
- Use JfreeChart to generate curves, histograms, pie charts, and distribution charts and display them to JSP-1
- Qt Graphicsview图形视图使用总结附流程图开发案例雏形
- Ligne - raisonnement graphique - 4 - classe de lettres
- Knowledge drop - PCB manufacturing process flow
- Line test - graphic reasoning -7- different graphic classes
- JS triangle
- Leetcode19. Delete the penultimate node of the linked list [double pointer]
猜你喜欢

There is another problem just online... Warm

Microservice Remote debug, nocalhost + rainbond microservice Development second Bomb
![Cause analysis and solution of too laggy page of [test interview questions]](/img/33/2c2256fd98b908ddaf5573f644ad7f.png)
Cause analysis and solution of too laggy page of [test interview questions]

Unity and webgl love each other

Sword finger offer 55 - I. depth of binary tree

Talk about DART's null safety feature

Leetcode1984. Minimum difference in student scores

行测-图形推理-6-相似图形类

行测-图形推理-8-图群类
![LeetCode206. Reverse linked list [double pointer and recursion]](/img/3c/84351e771ac9763c1e5f7b4921c099.jpg)
LeetCode206. Reverse linked list [double pointer and recursion]
随机推荐
Innovation today | five key elements for enterprises to promote innovation
Statistical method for anomaly detection
微生物健康網,如何恢複微生物群落
Locate to the bottom [easy to understand]
Line test - graphic reasoning -7- different graphic classes
Sword finger offer 28 Symmetric binary tree
【测试面试题】页面很卡的原因分析及解决方案
Class implementation of linear stack and linear queue (another binary tree pointer version)
30讲 线性代数 第五讲 特征值与特征向量
Qt Graphicsview图形视图使用总结附流程图开发案例雏形
2021-01-11
Unity technical notes (I) inspector extension
7-18 simple simulation of banking business queue
Explain in detail the communication mode between arm A7 and risc-v e907 on Quanzhi v853
行测-图形推理-7-相异图形类
双非大厂测试员亲述:对测试员来说,学历重要吗?
Line test - graphic reasoning - 3 - symmetric graphic class
小程序多种开发方式对比-跨端?低代码?原生?还是云开发?
[record of question brushing] 3 Longest substring without duplicate characters
微生物健康网,如何恢复微生物群落