Deep Learning Package based on TensorFlow

Overview

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license.

The project was started in May 2021 by YeongHyeon Park.
This project does not limit for participation.
Contribute now!

Installation

Dependencies

whiteboxlayer requires:

  • Numpy: 1.18.5
  • Scipy: 1.4.1
  • TensorFlow: 2.3.0

User installation

You can install the white-box-layer via simple command as below.

$ pip install whiteboxlayer

Development

We welcome new contributors of all experience levels. The white-box-layer community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We've included some basic information in this README.

Example

Example for Convolutional Neural Network

An example of constructing a convolutional neural network is covered. The relevant source code is additionally provided following links.

Define TensorFlow based module

class Neuralnet(tf.Module):

    def __init__(self, **kwargs):
        super(Neuralnet, self).__init__()

        self.who_am_i = kwargs['who_am_i']
        self.dim_h = kwargs['dim_h']
        self.dim_w = kwargs['dim_w']
        self.dim_c = kwargs['dim_c']
        self.num_class = kwargs['num_class']
        self.filters = kwargs['filters']

        self.layer = wbl.Layers()

        self.forward = tf.function(self.__call__)

    @tf.function
    def __call__(self, x, verbose=False):

        logit = self.__nn(x=x, name=self.who_am_i, verbose=verbose)
        y_hat = tf.nn.softmax(logit, name="y_hat")

        return logit, y_hat

    def __nn(self, x, name='neuralnet', verbose=True):

        for idx, _ in enumerate(self.filters[:-1]):
            if(idx == 0): continue
            x = self.layer.conv2d(x=x, stride=1, \
                filter_size=[3, 3, self.filters[idx-1], self.filters[idx]], \
                activation='relu', name='%s-%dconv' %(name, idx), verbose=verbose)
            x = self.layer.maxpool(x=x, ksize=2, strides=2, \
                name='%s-%dmp' %(name, idx), verbose=verbose)

        x = tf.reshape(x, shape=[x.shape[0], -1], name="flat")
        x = self.layer.fully_connected(x=x, c_out=self.filters[-1], \
                activation='relu', name="%s-clf0" %(name), verbose=verbose)
        x = self.layer.fully_connected(x=x, c_out=self.num_class, \
                activation=None, name="%s-clf1" %(name), verbose=verbose)

        return x

Initializing module

model = Neuralnet(\
    who_am_i="CNN", \
    dim_h=28, dim_w=28, dim_c=1, \
    num_class=10, \
    filters=[1, 32, 64, 128])

dummy = tf.zeros((1, model.dim_h, model.dim_w, model.dim_c), dtype=tf.float32)
model.forward(x=dummy, verbose=True)

Results

Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
You might also like...
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning operations reinvented (for pytorch, tensorflow, jax and others)
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Owner
YeongHyeon Park
YeongHyeon Park
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022