This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

Overview

ASL-Skeleton3D and ASL-Phono Datasets Generator

Build Code Quality DOI - ASL-Skeleton3D DOI - ASL-Phono

The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coordinates of the signers in the ASLLVD dataset. The ASL-Phono, in turn, introduces a novel linguistics-based representation, which describes the signs in the ASLLVD dataset in terms of a set of attributes of the American Sign Language phonology.

This is the source code used to generate the ASL-Skeleton3D and ASL-Phono datasets, which are based on the American Sign Language Lexicon Video Dataset (ASLLVD).

Learn more about the datasets:

  • Paper: "ASL-Skeleton3D and ASL-Phono: Two NovelDatasets for the American Sign Language" -> CIn

Download

Download the processed datasets by using the links below:

Generate

If you prefer generating the datasets by yourself, this section presents the requirements, setup and procedures to execute the code.

The generation is a process comprising the phases below, which start by the retrieval of the original ASLLVD samples for then computing additional properties, as follows:

  • download: original samples (video sequences) are obtained from the ASLLVD.
  • segment: signs are segmented from the original samples.
  • skeleton: signer skeletons are estimated.
  • normalize: the coordinates of the skeletons are normalized.
  • phonology: the phonological attributes are extracted.

Requirements

To generate the datasets, your system will need the following software configured:

OpenPose will require additional hardware and software configured which might include a NVIDIA GPU and related drivers and software. Please, check this link for the full list.

Recommended

If you prefer running a Docker container with the software requirements already configured, check out the link below -- just make sure to have a GPU available to your Docker environment:

Installation

Once observed the requirements, checkout the source code and execute the following command, which will setup your virtual environment and dependencies:

$ poetry install

Configuration

There is a set of files in the folder ./config that will help you to configure the parameters for generating the datasets. A good starting point is to take a look into the ./config/template.yaml file, which contains a basic structure with all the properties documented.

You will also find other predefined configurations that might help you to generate the datasets. Just remember to always review the comments inside of the files to fine-tune the execution to your environment.

Learn about the configurations available in the ./config/template.yaml, which contains the properties documented.

Generation

ASL-Skeleton3D

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-skeleton3d.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-skeleton3d.yaml

The resulting dataset will be located in the folder configured as output for the phase normalize, which by default is set to ../work/dataset/normalized.

ASL-Phono

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-phono.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-phono.yaml

The resulting dataset will be located in the folder configured as output for the phase phonology, which by default is set to ../work/dataset/phonology.

Logs

The logs from the datasets processing will be recorded in the file ./output.log.

Deprecated datasets

Previously, we introduced the dataset ASLLVD-Skeleton, which is now being replaced by the ASL-Skeleton3D. Read more about the old dataset in the links:

Citation

Please cite the following paper if you use this repository in your reseach.

@article{asl-datasets-2021,
  title     = {ASL-Skeleton3D and ASL-Phono: Two Novel Datasets for the American Sign Language},
  author    = {Cleison Correia de Amorim and Cleber Zanchettin},
  year      = {2021},
}

Contact

For any question, feel free to contact me at:

You might also like...
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

Source code for
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Comments
  • keypoint scale?

    keypoint scale?

    Hello this data looks to be amazing, but making use of it takes a bit more knowledge about how to actually translate the x,y values into usable points.

    It seems you guys have taken advantage of the --keypoint_scale in OpenPose - could you post something about how to translate these decimal numbers back into something more like a traditional x,y value? I'd like to draw these points using standard javascript, but right now I can't figure how how to rescale them back to size.

    Any help would be greatly appreciated!

    opened by mspanish 0
Releases(v1.0.0)
Owner
Cleison Amorim
Cleison Amorim
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022