Recognize numbers from an (28 x 28) image using neural networks

Overview

Number recognition

Recognize numbers from a 28 x 28 image using neural networks

Usage

This is an example of a simple usage of number-recognition

NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

  • PIL
from number_recognition import NumberRecognizer

n = NumberRecognizer()

n.init() # create a model
n.load() # load the model

num = n.recognize('path/to/image_28x28.png') # recognise the image
print(f"the number is {num}")

LICENSE

The MIT License (MIT)

Copyright (c) 2021 mauro-balades <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
You might also like...
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

PyTorch implementation of
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

 U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation
U-Net Implementation: Convolutional Networks for Biomedical Image Segmentation" using the Carvana Image Masking Dataset in PyTorch

U-Net Implementation By Christopher Ley This is my interpretation and implementation of the famous paper "U-Net: Convolutional Networks for Biomedical

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Code for
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Releases(1.0.5)
  • 1.0.5(Apr 7, 2022)

    Number recognition

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.4(Apr 7, 2022)

    Number recognition

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.3(Oct 29, 2021)

    Number recognition

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.2(Oct 29, 2021)

    Number recognition

    https://pypi.org/project/number-recognition/

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.1(Oct 29, 2021)

    Number recognition

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
  • 1.0.0(Oct 29, 2021)

    Number recognition

    https://pypi.org/project/number-recognition/

    Recognize numbers from a 28 x 28 image using neural networks

    Usage

    This is an example of a simple usage of number-recognition

    NOTE: This number recognizer uses images with size 28 x 28 pixes, you can resize it by using an external library like:

    • PIL
    
    from number_recognition import NumberRecognizer
    
    n = NumberRecognizer()
    
    n.init() # create a model
    n.load() # load the model
    
    num = n.recognize('path/to/image_28x28.png') # recognise the image
    print(f"the number is {num}")
    

    LICENSE

    The MIT License (MIT)
    
    Copyright (c) 2021 mauro-balades <[email protected]>
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    
    Source code(tar.gz)
    Source code(zip)
Owner
Mauro Baladés
👋 Hello! I ❤ open source, so you can see my lil projects.
Mauro Baladés
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022