当前位置:网站首页>MATLAB skills (28) Fuzzy Comprehensive Evaluation
MATLAB skills (28) Fuzzy Comprehensive Evaluation
2022-07-05 08:27:00 【Mozun 2020】
MATLABPetit conseil(28)Évaluation globale floue
Préface
MATLABL'apprentissage lié au traitement d'images est très convivial,Peut commencer à zéro,Le traitement d'image de base a été encapsulé avec de nombreuses fonctions directement appelables,Dans cette série d'articles, nous présentons principalement quelques - uns desMATLABCertaines fonctions conceptuelles sont couramment utilisées dans la démonstration de routine!
La méthode d'évaluation globale floue est une méthode d'évaluation globale basée sur des mathématiques floues.La méthode d'évaluation complète transforme l'évaluation qualitative en évaluation quantitative basée sur la théorie du degré d'adhésion des mathématiques floues,C'est - à - dire faire une évaluation globale des choses ou des objets limités par de nombreux facteurs en utilisant des mathématiques floues.Il a des résultats clairs,Caractéristiques systématiques,Peut mieux résoudre le flou、Problèmes difficiles à quantifier,Convient à la résolution de divers problèmes incertains.
La caractéristique la plus importante de la méthode d'évaluation globale floue est la suivante::
Comparaison
Sur la base de la valeur optimale du facteur d'évaluation,La valeur d'évaluation est:1;Les autres facteurs sous - optimaux sont évalués en fonction du degré de sous - optimalité..Relations fonctionnelles
Peut être basé sur les caractéristiques de divers facteurs d'évaluation,Déterminer la relation fonctionnelle entre la valeur d'évaluation et la valeur du facteur d'évaluation(C'est - à - dire::Fonction d'adhésion).Déterminer cette relation fonctionnelle(Fonction d'adhésion)Il y a plusieurs façons de,Par exemple,FMéthodes statistiques,Divers types deFDistribution, etc..Bien sûr.,Des experts expérimentés en évaluation des soumissions peuvent également être invités à effectuer des évaluations.,Donner directement la valeur d'évaluation.
Dans la préparation des documents d'appel d'offres, Selon les détails du projet , Sélection ciblée des facteurs d'évaluation , Déterminer scientifiquement la relation fonctionnelle entre la valeur d'évaluation et la valeur des facteurs d'évaluation et déterminer raisonnablement le poids des facteurs d'évaluation . Procédure générale d'évaluation globale floue :
Construction d'un indice d'évaluation global flou
Le système d'index d'évaluation globale flou est la base de l'évaluation globale , Pertinence de la sélection des indicateurs d'évaluation , Aura une incidence directe sur l'exactitude de l'évaluation globale . La construction de l'indice d'évaluation devrait faire largement référence aux données industrielles ou aux lois et règlements pertinents du système d'indice d'évaluation. .Construire un vecteur de poids
Par l'expérience d'experts ou AHP Construction du vecteur de poids par AHP .Construire une matrice d'adhésion
Construire une fonction d'adhésion appropriée pour construire une matrice d'adhésion .Synthèse de la matrice d'adhésion et du poids
Il a été synthétisé avec un facteur de synthèse approprié. , Et expliquer le vecteur de résultat .
Exemple de simulation MATLABLa version estMATLAB2015b.
Un.. MATLABSimulation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Fonction: Cette procédure est une procédure d'évaluation globale floue , Poids donné artificiellement
%Environnement:Win7,Matlab2015b
%Modi: C.S
%Temps:2022-06-27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% I. Vider les variables d'environnement
clear all
clc
tic
%--------------------------------------------------------------------------
%Exécution du programme,Commande d'entrée directemohuC'est tout.
% Ce programme peut être étendu
% Évaluation globale floue à deux niveaux , Peut être compilé mohufun.mFonction pour implémenter
%Par exemple:[yy1,qdh,qdh1]=mohufun(R,L,M,w,XX,yy] Pour exécuter cette fonction deux fois , Et préparer mDocumentation, Deux de ces fonctions peuvent être mises en œuvre
% Explication des résultats de l'évaluation floue :
%1: La somme de tous les niveaux d'adhésion est: 1.
%2: Le résultat de sortie augmente avec une variable qdh1 Les résultats de
%3: Dernier niveau [0.2 0 0 0.8]C'est normal., Contrairement à la notion de distance hiérarchique dans l'évaluation de l'extension .
% Il n'y a que des variables qui appartiennent à 0.2 Ce niveau de .
%--------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cette partie est calculée par , Partie donnée par l'homme , C'est - à - dire les conditions de résolution pertinentes
% Entrée requise avant le calcul
R=4; % Nombre de facteurs d'influence
L=4; % Nombre de grades jugés
M=29; % Nombre de sections à évaluer
w=[0.1 0.7 0.1 0.1];%Poids de chaque indicateur
% Domaine classique de l'évaluation de l'extension , Les colonnes quotidiennes forment un groupe ,TotalLGroupe, De gauche à droite 1,2,3,4
% Le verdict est 1, Représente le champ classique le plus à gauche ,Pour4 Appartient au domaine classique le plus à droite
%XX Est la portée de la fonction d'adhésion , Voir l'évaluation globale floue basée sur des ensembles bruts pour plus de détails. , Une a quatre fonctions d'adhésion
%Les deux premiers chiffres, Déterminer la fonction d'adhésion d'un segment descendant ,Divisé en trois paragraphes
% Après ça 4 Le nombre ci - dessus est un groupe , Détermination de la fonction d'adhésion d'un trapèze , Divisé en cinq paragraphes
% Les deux derniers sont un seul groupe , Diviser la fonction d'adhésion d'un segment ascendant en trois segments
% Chaque ligne ci - dessous a 12Nombre,Sa part4Grade, Nombre de points de démarcation des sous - bureaux 2 4 4 2 La somme est12
% C'est - à - dire quatre niveaux
%XX Sont également des données de base pour le calcul
xx=[70 90 70 90 110 130 110 130 170 190 170 190
45 35 45 35 30 20 30 20 17 10 17 10
1.5 2.5 1.5 2.5 3 4 3 4 4.5 5.5 4.5 5.5
0.25 0.35 0.25 0.35 0.45 0.55 0.45 0.55 0.65 0.75 0.65 0.75];
%pp1 Plus grande est la mesure ,Plus le grade est élevé, Toujours plus grand , Indicateur de niveau inférieur
%0 Plus la valeur de l'indicateur est élevée , Plus le niveau est élevé
%1 Plus la valeur de l'indicateur est élevée , Plus le niveau est bas
% Cela doit être strictement respecté. ,XX(i,:),De petit en grand0,XX(i,:)Du plus grand au plus petit1,
% Si vous prenez ce qui précède XX Inversion de l'ordre des lignes ,Oui.pp1=[1 0 1 1 ]
pp1=[0 1 0 0];
% Paramètres de chaque section de tunnel à évaluer
yy=[200 8 6 0.8
200 9.5 6 0.8
200 11 6 0.8
200 12.5 6 0.8
200 14 6 0.8
200 15.5 6 0.8
200 17 6 0.8
200 18.5 6 0.8
200 20 6 0.8
200 21.5 6 0.8
200 23 6 0.8
200 24.5 6 0.8
200 26 6 0.8
200 27.5 6 0.8
200 29 6 0.8
200 30.5 6 0.8
200 32 6 0.8
200 33.5 6 0.8
200 35 6 0.8
200 36.5 6 0.8
200 38 6 0.8
200 39.5 6 0.8
200 41 6 0.8
200 42.5 6 0.8
200 44 6 0.8
200 45.5 6 0.8
200 47 6 0.8
200 48.5 6 0.8
200 50 6 0.8
];
% Forme de la fonction d'adhésion de la section ascendante et de la section descendante
% Notez que la forme de la fonction d'adhésion est la même que celle de la fonction d'adhésion dans cet article. , Sinon, changez les parties de base du programme
%Ici.a Point médian de l'intervalle ,b Largeur de la Section
f1=inline('0.5-0.5*sin((x-a)*pi/b)','a','b','x');
f2=inline('0.5+0.5*sin((x-a)*pi/b)','a','b','x');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculer l'adhésion de chaque indicateur au premier niveau
for i=1:M,
for k=1:R,
j=1;
if pp1(k)==0 % D'abord, plus il est grand. , Indicateurs de niveau supérieur
if yy(i,k)<xx(k,j)
yy1(i,k,j)=1;
elseif yy(i,k)<=xx(k,j+1)
yy1(i,k,j)=f1(0.5*(xx(k,j)+xx(k,j+1)),abs(xx(k,j)-xx(k,j+1)),yy(i,k)) ;
else yy1(i,k,j)=0;
end
% Plus la valeur est petite, , Indicateurs de niveau supérieur
% Les sous - ensembles supérieurs et inférieurs à un doivent être interchangeables ,Fonctionsf1Etf2 Aussi interchangeable
elseif yy(i,k)>xx(k,j)
yy1(i,k,j)=1;
elseif yy(i,k)>=xx(k,j+1)
yy1(i,k,j)=f2(0.5*(xx(k,j)+xx(k,j+1)),abs(xx(k,j)-xx(k,j+1)),yy(i,k));
else yy1(i,k,j)=0;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculer l'adhésion de chaque indicateur au dernier niveau
for i=1:M,
for k=1:R,
j=L;
if pp1(k)==0 % D'abord, plus il est grand. , Indicateurs de niveau supérieur
if yy(i,k)<xx(k,j*4-5)
yy1(i,k,j)=0;
elseif yy(i,k)<=xx(k,j*4-4)
yy1(i,k,j)=f2(0.5*(xx(k,j*4-5)+xx(k,j*4-4)),abs(xx(k,j*4-5)-xx(k,j*4-4)),yy(i,k));
else yy1(i,k,j)=1;
end
% Plus la valeur est petite, , Indicateurs de niveau supérieur
% Les sous - ensembles supérieurs et inférieurs à un doivent être interchangeables ,Fonctionsf1Etf2 Aussi interchangeable
elseif yy(i,k)>xx(k,j*4-5)
yy1(i,k,j)=0;
elseif yy(i,k)>=xx(k,j*4-4)
yy1(i,k,j)=f1(0.5*(xx(k,j*4-5)+xx(k,j*4-4)),abs(xx(k,j*4-5)-xx(k,j*4-4)),yy(i,k)) ;
else yy1(i,k,j)=1;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculer l'adhésion de chaque indicateur aux niveaux intermédiaires
for i=1:M,
for k=1:R,
for j=2:L-1;
if pp1(k)==0 % D'abord, plus il est grand. , Indicateurs de niveau supérieur
if yy(i,k)<xx(k,j*4-5)
yy1(i,k,j)=0;
elseif yy(i,k)<=xx(k,j*4-4)
yy1(i,k,j)=f2(0.5*(xx(k,j*4-5)+xx(k,j*4-4)),abs(xx(k,j*4-5)-xx(k,j*4-4)),yy(i,k));
elseif yy(i,k)<=xx(k,j*4-3)
yy1(i,k,j)=1;
elseif yy(i,k)<=xx(k,j*4-2)
yy1(i,k,j)=f1(0.5*(xx(k,j*4-3)+xx(k,j*4-2)),abs(xx(k,j*4-3)-xx(k,j*4-2)),yy(i,k)) ;
else yy1(i,k,j)=0;
end
% Plus la valeur est petite, , Indicateurs de niveau supérieur
% Les sous - ensembles supérieurs et inférieurs à un doivent être interchangeables ,Fonctionsf1Etf2 Aussi interchangeable
elseif yy(i,k)>xx(k,j*4-5)
yy1(i,k,j)=0;
elseif yy(i,k)>=xx(k,j*4-4)
yy1(i,k,j)=f1(0.5*(xx(k,j*4-5)+xx(k,j*4-4)),abs(xx(k,j*4-5)-xx(k,j*4-4)),yy(i,k));
elseif yy(i,k)>=xx(k,j*4-3)
yy1(i,k,j)=1;
elseif yy(i,k)>=xx(k,j*4-2)
yy1(i,k,j)=f2(0.5*(xx(k,j*4-3)+xx(k,j*4-2)),abs(xx(k,j*4-3)-xx(k,j*4-2)),yy(i,k)) ;
else yy1(i,k,j)=0;
end
end
end
end
% %Calcul de la multiplication, Degré d'adhésion multiplié par le poids degré d'adhésion de chaque segment de trou à chaque niveau ,Prendre la valeur maximale
%dot La fonction est une fonction de produit interne , La somme est obtenue après que les composants correspondants des deux vecteurs sont égaux.
for i=1:M,
for j=1:L,
qdh(i,j)=dot(yy1(i,:,j),w);
end
end
% Degré d'adhésion multiplié par la valeur de grade , Déterminer le niveau
% %qdh Résultats de l'évaluation ,Prenez le plus grand, À quel niveau appartient - il?
% qdh1, Valeur du grade
for i=1:M,
for j=1:L,
[maxlevel(i),qdh1(i)]=max(qdh(i,:));
end
disp(['Échantillons',num2str(i),' La classification correspondante est: :',num2str(qdh1(i))]);
end
figure(1)
plot(qdh1(1:29),'-*');
title(' Évaluation globale floue et prévision ','fontsize',12)
xlabel('Échantillons','fontsize',12)
ylabel('Catégorie','fontsize',12)
toc
2.. Résultats de la simulation
Échantillons1 La classification correspondante est: :4
Échantillons2 La classification correspondante est: :4
Échantillons3 La classification correspondante est: :4
Échantillons4 La classification correspondante est: :4
Échantillons5 La classification correspondante est: :4
Échantillons6 La classification correspondante est: :3
Échantillons7 La classification correspondante est: :3
Échantillons8 La classification correspondante est: :3
Échantillons9 La classification correspondante est: :3
Échantillons10 La classification correspondante est: :3
Échantillons11 La classification correspondante est: :3
Échantillons12 La classification correspondante est: :3
Échantillons13 La classification correspondante est: :2
Échantillons14 La classification correspondante est: :2
Échantillons15 La classification correspondante est: :2
Échantillons16 La classification correspondante est: :2
Échantillons17 La classification correspondante est: :2
Échantillons18 La classification correspondante est: :2
Échantillons19 La classification correspondante est: :2
Échantillons20 La classification correspondante est: :2
Échantillons21 La classification correspondante est: :2
Échantillons22 La classification correspondante est: :2
Échantillons23 La classification correspondante est: :1
Échantillons24 La classification correspondante est: :1
Échantillons25 La classification correspondante est: :1
Échantillons26 La classification correspondante est: :1
Échantillons27 La classification correspondante est: :1
Échantillons28 La classification correspondante est: :1
Échantillons29 La classification correspondante est: :1
Le temps est écoulé. 0.075994 Secondes.
Trois. Résumé
Méthode d'évaluation globale floue (fuzzy comprehensive evaluation method) Est l'une des méthodes mathématiques les plus fondamentales en mathématiques floues , La méthode décrit les limites floues en termes de degré d'adhésion . En raison de la complexité des facteurs d'évaluation 、 Hiérarchie des objets d'évaluation 、 Le flou dans les critères d'évaluation et le flou ou l'incertitude dans l'évaluation des facteurs d'influence 、 Une série de problèmes tels que la difficulté de quantifier les indices qualitatifs , Ce qui rend difficile l'utilisation de l'absolu “C'est tout l'un ou tout l'autre.” Pour décrire avec précision la réalité objective , Il y a souvent “ Et c'est l'autre ” Le flou de , Sa description est également exprimée en langage naturel. , Et la plus grande caractéristique du langage naturel est son imprécision , Et cette ambiguïté est difficile à mesurer uniformément avec les modèles mathématiques classiques .Donc,, Une méthode d'évaluation globale floue basée sur des ensembles flous , Évaluation complète de l'état hiérarchique des objets évalués à partir de plusieurs indices , Il divise l'intervalle de variation de la chose jugée , D'une part, vous pouvez tenir compte de la hiérarchie des objets , Rendre les critères d'évaluation 、 Le flou des facteurs d'influence est incarné ; D'autre part, l'expérience humaine peut être pleinement utilisée dans l'évaluation. , Rendre les résultats de l'évaluation plus objectifs ,Conforme à la situation réelle. L'évaluation globale floue peut combiner des facteurs qualitatifs et quantitatifs , Accroître la quantité d'information , Améliorer le nombre d'évaluations , Conclusion crédible de l'évaluation .
Il existe de nombreuses méthodes traditionnelles d'évaluation globale. , Il est également largement utilisé , Mais il n'y a pas de moyen de s'adapter ,Résoudre tous les problèmes, Chaque approche a son objectif et ses principaux domaines d'application. . Si vous voulez résoudre de nouveaux problèmes dans de nouveaux domaines , La méthode de synthèse floue est évidemment plus appropriée . Méthode d'évaluation floue fondée sur des mathématiques floues . Les mathématiques floues sont nées 1965Année, Son fondateur, American Automatic Control Expert L.A.Zadeh.20Le siècle80Fin des années, Le Japon applique la technologie floue aux robots 、Contrôle du processus、 Locomotive de métro 、Gestion du trafic、Dépannage、Diagnostic médical、Reconnaissance du son、Traitement d'images、 Prévision du marché et autres domaines . Application de la théorie floue et de la méthode floue au Japon et perspectives du marché , Un grand choc pour les entreprises occidentales , Il est également largement reconnu dans les milieux universitaires. . La recherche sur les mathématiques floues et la méthode d'évaluation globale floue a commencé relativement tard en Chine. , Mais ces dernières années, (Comme la médecine、Construction、 Surveillance de la qualité de l'environnement 、 Eau, etc ) L'application de .Un par jourMATLABPetite connaissance, Tout le monde s'améliore. !
边栏推荐
- Shell script realizes the reading of serial port and the parsing of message
- QEMU demo makefile analysis
- H264 (I) i/p/b frame gop/idr/ and other parameters
- Is the security account given by Yixue school safe? Where can I open an account
- 实例009:暂停一秒输出
- Void* C is a carrier for realizing polymorphism
- Negative pressure generation of buck-boost circuit
- 实例005:三数排序 输入三个整数x,y,z,请把这三个数由小到大输出。
- 【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)
- 实例004:这天第几天 输入某年某月某日,判断这一天是这一年的第几天?
猜你喜欢
STM32 single chip microcomputer - external interrupt
Keil use details -- magic wand
STM32---ADC
DCDC circuit - function of bootstrap capacitor
Management and use of DokuWiki (supplementary)
Brief discussion on Buck buck circuit
C language # and #
Example 008: 99 multiplication table
After installing the new version of keil5 or upgrading the JLINK firmware, you will always be prompted about the firmware update
MySQL之MHA高可用集群
随机推荐
Take you to understand the working principle of lithium battery protection board
Zero length array in GNU C
H264 (I) i/p/b frame gop/idr/ and other parameters
Charge pump boost principle - this article will give you a simple understanding
动力电池UL2580测试项目包括哪些
Semiconductor devices (III) FET
STM32 single chip microcomputer - external interrupt
Cinq détails de conception du régulateur de tension linéaire
Several important parameters of LDO circuit design and type selection
Example 010: time to show
实例007:copy 将一个列表的数据复制到另一个列表中。
Installation and use of libjpeg and ligpng
如何写Cover Letter?
WiFi wpa_ Detailed description of supplicant hostpad interface
Compilation warning solution sorting in Quartus II
[NAS1](2021CVPR)AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling (未完)
Example 009: pause output for one second
Introduction of air gap, etc
go依赖注入--google开源库wire
Example 001: the number combination has four numbers: 1, 2, 3, 4. How many three digits can be formed that are different from each other and have no duplicate numbers? How many are each?