当前位置:网站首页>3.3 Monte Carlo Methods: case study: Blackjack of Policy Improvement of on- & off-policy Evaluation
3.3 Monte Carlo Methods: case study: Blackjack of Policy Improvement of on- & off-policy Evaluation
2022-07-03 10:09:00 【Most appropriate commitment】
Catalog
Background
In 3.1 Monte Carlo Methods & case study: Blackjack of on-Policy Evaluation, we finished the evaluation of the on-policy Monte Carlo Method. And in 3.2 Off-Policy Monte Carlo Methods & case study: Blackjack of off-Policy Evaluation, we completed the evaluation of the off-policy Monte Carlo Method and comparision between off-policy and on-policy method. In this article, we will summarize the policy improvement for both Monte Carlo Method.
For generalized Policy improvement, we do not let q(s,a) or v(s) converge and just let the loop of evaluation and improvement keep going. Finally, the result will go to the optimal policy.
However, I have a confusion that in Monte Carlo methods, if our policy is deterministic, we could not get q(s,a) or v(s,a) for every pair of state and action. How could we improve our policy by partially missed value / state-action function?
On-policy Method
we have to compromise between exploitation and exploration. So the policy will be soft-greedy policy.
Code:
## settings
import math
import numpy as np
import random
# visualization
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import copy
# state
# card scope
CARD_MINIMUM = 4;
CARD_MAXIMUM = 20;
CARD_TERMINAL = 21;
# rival's shown card
SHOWN_NUMBER_MINIMUM = 1;
SHOWN_NUMBER_MAXIMUM = 10;
# if we have usable Ace
ACE_ABLE = 1;
ACE_DISABLE = 0;
# action we can take
STICK = 0;
HIT = 1;
ACTION = [STICK,HIT];
# Reward of result
R_proceed = 0;
R_WIN = 1;
R_DRAW = 0;
R_LOSE = -1;
# loop number
LOOP_IMPROVEMENT = 1000;
LOOP_EVALUATION =1000;
# soft policy
SIGMA = 0.1;
#policy
# our target policy stick at 20&21, or hit
pi_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
if card < 20:
pi_a_s[card,:,:,STICK] = SIGMA/len(ACTION);
pi_a_s[card,:,:,HIT] = 1+SIGMA/len(ACTION)-SIGMA;
else:
pi_a_s[card,:,:,STICK] = 1+SIGMA/len(ACTION)-SIGMA;
pi_a_s[card,:,:,HIT] = SIGMA/len(ACTION);
# rival policy stick on 17 or greater,
pi_rival_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
if card < 17:
pi_rival_a_s[card,:,:,STICK] = 0;
pi_rival_a_s[card,:,:,HIT] = 1;
else:
pi_rival_a_s[card,:,:,STICK] = 1;
pi_rival_a_s[card,:,:,HIT] = 0;
# behavior policy random
b_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for act in ACTION:
b_a_s[card,:,:,act]= 1.0/len(ACTION);
# function
#actions taken by policy and current sum_card
def get_action(sum_card,showncard,usable_ace,policy):
p=[];
for act in ACTION:
p.append(policy[sum_card,showncard,usable_ace,act]);
return np.random.choice(ACTION,p=p);
## set class for agent/rival to get sampling
class Agent_rival_class():
def __init__(self):
self.total_card=0;
self.card_set=[];
self.action_set=[];
self.last_action=HIT;
self.state = 'NORMAL&HIT';
self.showncard=0;
self.usable_ace=ACE_DISABLE;
for initial in range(0,2):
card = random.randint(1,14);
if card > 10:
card = 10;
if card == 1:
if self.usable_ace == ACE_ABLE:
card = 1;
else:
card = 11;
self.usable_ace = ACE_ABLE;
if initial == 0:
self.showncard = card;
if self.showncard == 11:
self.showncard = 1;
self.card_set.append(card);
self.total_card += card;
Agent_rival_class.check(self);
def check(self):
if self.total_card == 21:
self.state = 'TOP';
if self.total_card > 21:
self.state = 'BREAK';
if self.total_card < 21 and self.last_action == STICK:
self.state = 'NORMAL&STICK';
def behave(self,behave_policy):
self.last_action = get_action(self.total_card,self.showncard,self.usable_ace,behave_policy);
self.action_set.append(self.last_action);
if self.last_action == HIT:
card = random.randint(1,14);
if card > 10:
card = 10;
if card == 1:
if self.usable_ace == ACE_ABLE:
card = 1;
else:
card = 11;
self.usable_ace = ACE_ABLE;
self.total_card += card;
# make sure cards in set cards are from 1 to 10. without 11.
if card ==11:
self.card_set.append(1);
if self.total_card > 21 and self.usable_ace == ACE_ABLE:
self.total_card -= 10;
self.usable_ace = ACE_DISABLE;
Agent_rival_class.check(self);
# visualization function
def visual_func_s_a_1_4(func,sub_limit,sup_limit,title):
fig, axes = plt.subplots(1,4,figsize=(30,50))
plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.5,hspace=0.5)
FONT_SIZE = 10;
xlabel=[]
ylabel=[]
for i in range(4,20+1):
ylabel.append(str(i))
for j in range(1,10+1):
xlabel.append(str(j))
# ordinary sample
#for 1,1 no Ace and stick
axes[0].set_xticks(range(0,10,1))
axes[0].set_xticklabels(xlabel)
axes[0].set_yticks(range(0,17,1) )
axes[0].set_yticklabels(ylabel)
axes[0].set_title('when no usable Ace and STICK',fontsize=FONT_SIZE)
im1 = axes[0].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE,STICK],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,2 no Ace and hit
axes[1].set_xticks(range(0,10,1))
axes[1].set_xticklabels(xlabel)
axes[1].set_yticks(range(0,17,1) )
axes[1].set_yticklabels(ylabel)
axes[1].set_title('when no usable Ace and HIT',fontsize=FONT_SIZE)
im1 = axes[1].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE,HIT],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,3 Ace and stick
axes[2].set_xticks(range(0,10,1))
axes[2].set_xticklabels(xlabel)
axes[2].set_yticks(range(0,17,1) )
axes[2].set_yticklabels(ylabel)
axes[2].set_title(' when usable Ace and STICK',fontsize=FONT_SIZE)
im1 = axes[2].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE,STICK],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,4 Ace and hit
axes[3].set_xticks(range(0,10,1))
axes[3].set_xticklabels(xlabel)
axes[3].set_yticks(range(0,17,1) )
axes[3].set_yticklabels(ylabel)
axes[3].set_title(' when usable Ace and HIT',fontsize=FONT_SIZE)
im1 = axes[3].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE,HIT],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
fig.suptitle(title,fontsize=15)
fig.colorbar(im1,ax=axes.ravel().tolist())
def visual_func_s_a_1_2(func,sub_limit,sup_limit,title):
fig, axes = plt.subplots(1,2,figsize=(30,50))
plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.5,hspace=0.5)
FONT_SIZE = 10;
xlabel=[]
ylabel=[]
for i in range(4,20+1):
ylabel.append(str(i))
for j in range(1,10+1):
xlabel.append(str(j))
# ordinary sample
#for 1,1
axes[0].set_xticks(range(0,10,1))
axes[0].set_xticklabels(xlabel)
axes[0].set_yticks(range(0,17,1) )
axes[0].set_yticklabels(ylabel)
axes[0].set_title('when usable Ace',fontsize=FONT_SIZE)
im1 = axes[0].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,2
axes[1].set_xticks(range(0,10,1))
axes[1].set_xticklabels(xlabel)
axes[1].set_yticks(range(0,17,1) )
axes[1].set_yticklabels(ylabel)
axes[1].set_title('when no usable Ace',fontsize=FONT_SIZE)
im1 = axes[1].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
fig.suptitle(title,fontsize=15)
fig.colorbar(im1,ax=axes.ravel().tolist())
# main programme
#rewards obtained
Q_s_a_ordinary = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64);
Q_n_ordinary=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)));
V_s_ordinary = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64);
V_n_ordinary=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
Q_s_a_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64);
Q_ratio_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
V_s_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64);
V_ratio_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64)
# choose the policy to decide off-policy or on-policy
# initialization of policies
# TARGET_POLICY will change in policy improvement
BEHAVIOR_POLICY = pi_a_s;
TARGET_POLICY = pi_a_s;
POLICY_UPDATION=[];
POLICY_UPDATION.append(copy.deepcopy(TARGET_POLICY));
xlabel=[];
policy_start=[];
policy_optimal=[];
# policy evaluation
for every_loop_improvement in range(0,LOOP_IMPROVEMENT):
for every_loop_evaluation in range(0,LOOP_EVALUATION):
S=[];
agent = Agent_rival_class();
rival = Agent_rival_class();
R_T = 0;
ratio = 1;
# obtain samples
# initialization of 21
if agent.state=='TOP' or rival.state=='TOP':
continue;
S.append([agent.total_card,rival.showncard,agent.usable_ace]);
while(agent.state=='NORMAL&HIT'):
# change the policy for behavioral policy
agent.behave(BEHAVIOR_POLICY);
S.append([agent.total_card,rival.showncard,agent.usable_ace]);
if agent.state == 'BREAK':
R_T = -1;
elif agent.state == 'TOP':
R_T = 1;
else:
while(rival.state=='NORMAL&HIT'):
rival.behave(pi_rival_a_s);
if rival.state == 'BREAK':
R_T = 1;
elif rival.state == 'TOP':
R_T = 0;
else:
if agent.total_card > rival.total_card:
R_T = 1;
elif agent.total_card < rival.total_card:
R_T = -1;
else:
R_T = 0;
# policy evaluation & policy improvement
G = R_T; # because R in the process is zero.
for i in range(1,len(agent.action_set)+1):
j = -i;
ratio *= TARGET_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j] ]/BEHAVIOR_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j] ];
# q_s_a for ordinary sample
Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] = Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] *\
Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]/(Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]+1) \
+ ratio*G/(Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]+1);
Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] +=1 ;
# V_s for ordinary sample
V_s_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] = V_s_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] *\
V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]/(V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]+1) \
+ ratio*G/(V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]+1);
V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] +=1 ;
# q_s_a for weighed sample
if ratio != 0 or Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] != 0:
Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] = Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] * \
Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] / (ratio + Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]) \
+ ratio * G / (ratio + Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]) ;
Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] += ratio;
# V_s for ordinary sample
if ratio != 0 or V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] != 0:
V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] = V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] * \
V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] / (ratio + V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]]) \
+ ratio * G / (ratio + V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]]) ;
V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] += ratio;
# policy improvement
action_max =ACTION[ np.argmax( Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],:] ) ];
TARGET_POLICY[ S[j-1][0],S[j-1][1] ,S[j-1][2] ,: ] = SIGMA/len(ACTION);
TARGET_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],action_max ] = 1+SIGMA/len(ACTION)-SIGMA;
if action_max != agent.action_set[j]:
POLICY_UPDATION.append(copy.deepcopy(TARGET_POLICY));
break;
# visualization
# policy optimal
POLICY_RESULT = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
POLICY_RESULT_BY_POLICY = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
for card_num in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for shown_num in range(SHOWN_NUMBER_MINIMUM,SHOWN_NUMBER_MAXIMUM+1):
for ace in range(0,2):
POLICY_RESULT[card_num,shown_num,ace] = ACTION[ np.argmax( Q_s_a_ordinary[card_num,shown_num,ace,:] ) ]
POLICY_RESULT_BY_POLICY[card_num,shown_num,ace] = ACTION[ np.argmax( TARGET_POLICY[card_num,shown_num,ace,:] ) ]
print(len(POLICY_UPDATION))
for i in range(0,len(POLICY_UPDATION)):
if i%100000 == 0:
POLICY_MIDDLE=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
for card_num in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for shown_num in range(SHOWN_NUMBER_MINIMUM,SHOWN_NUMBER_MAXIMUM+1):
for ace in range(0,2):
POLICY_MIDDLE[card_num,shown_num,ace] = ACTION[ np.argmax( POLICY_UPDATION[i][card_num,shown_num,ace,:] ) ]
visual_func_s_a_1_2(POLICY_MIDDLE,-1,1,'policy loop number: '+str(i));
visual_func_s_a_1_2(POLICY_RESULT,-1,1,'optimal policy');
# for state-action function
# oridnary sample
visual_func_s_a_1_4(Q_s_a_ordinary,-1,1,'state-action function in ordinary sample')
# weighed sample
visual_func_s_a_1_4(Q_s_a_weigh,-1,1,'state-action function in weighed sample')
# for value function
# ordinary sample
visual_func_s_a_1_2(V_s_ordinary,-1,1,'value function in ordinary sample')
# weighed sample
visual_func_s_a_1_2(V_s_weigh,-1,1,'value function in weighed sample')
# optimal policy show
visual_func_s_a_1_2(POLICY_RESULT,-1,1,'optimal policy by q_a_s')
# updation number
visual_func_s_a_1_4(Q_n_ordinary,0,300,'number')
plt.show();
Result:
Off-policy Method
Code
## settings
import math
import numpy as np
import random
# visualization
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
import copy
# state
# card scope
CARD_MINIMUM = 4;
CARD_MAXIMUM = 20;
CARD_TERMINAL = 21;
# rival's shown card
SHOWN_NUMBER_MINIMUM = 1;
SHOWN_NUMBER_MAXIMUM = 10;
# if we have usable Ace
ACE_ABLE = 1;
ACE_DISABLE = 0;
# action we can take
STICK = 0;
HIT = 1;
ACTION = [STICK,HIT];
# Reward of result
R_proceed = 0;
R_WIN = 1;
R_DRAW = 0;
R_LOSE = -1;
# loop number
LOOP_IMPROVEMENT = 1000;
LOOP_EVALUATION =1000;
#policy
# our target policy stick at 20&21, or hit
pi_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
if card < 20:
pi_a_s[card,:,:,STICK] = 0;
pi_a_s[card,:,:,HIT] = 1;
else:
pi_a_s[card,:,:,STICK] = 1;
pi_a_s[card,:,:,HIT] = 0;
# rival policy stick on 17 or greater,
pi_rival_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
if card < 17:
pi_rival_a_s[card,:,:,STICK] = 0;
pi_rival_a_s[card,:,:,HIT] = 1;
else:
pi_rival_a_s[card,:,:,STICK] = 1;
pi_rival_a_s[card,:,:,HIT] = 0;
# behavior policy random
b_a_s = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
for card in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for act in ACTION:
b_a_s[card,:,:,act]= 1.0/len(ACTION);
# function
#actions taken by policy and current sum_card
def get_action(sum_card,showncard,usable_ace,policy):
p=[];
for act in ACTION:
p.append(policy[sum_card,showncard,usable_ace,act]);
return np.random.choice(ACTION,p=p);
## set class for agent/rival to get sampling
class Agent_rival_class():
def __init__(self):
self.total_card=0;
self.card_set=[];
self.action_set=[];
self.last_action=HIT;
self.state = 'NORMAL&HIT';
self.showncard=0;
self.usable_ace=ACE_DISABLE;
for initial in range(0,2):
card = random.randint(1,14);
if card > 10:
card = 10;
if card == 1:
if self.usable_ace == ACE_ABLE:
card = 1;
else:
card = 11;
self.usable_ace = ACE_ABLE;
if initial == 0:
self.showncard = card;
if self.showncard == 11:
self.showncard = 1;
self.card_set.append(card);
self.total_card += card;
Agent_rival_class.check(self);
def check(self):
if self.total_card == 21:
self.state = 'TOP';
if self.total_card > 21:
self.state = 'BREAK';
if self.total_card < 21 and self.last_action == STICK:
self.state = 'NORMAL&STICK';
def behave(self,behave_policy):
self.last_action = get_action(self.total_card,self.showncard,self.usable_ace,behave_policy);
self.action_set.append(self.last_action);
if self.last_action == HIT:
card = random.randint(1,14);
if card > 10:
card = 10;
if card == 1:
if self.usable_ace == ACE_ABLE:
card = 1;
else:
card = 11;
self.usable_ace = ACE_ABLE;
self.total_card += card;
# make sure cards in set cards are from 1 to 10. without 11.
if card ==11:
self.card_set.append(1);
if self.total_card > 21 and self.usable_ace == ACE_ABLE:
self.total_card -= 10;
self.usable_ace = ACE_DISABLE;
Agent_rival_class.check(self);
# visualization function
def visual_func_s_a_1_4(func,sub_limit,sup_limit,title):
fig, axes = plt.subplots(1,4,figsize=(30,50))
plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.5,hspace=0.5)
FONT_SIZE = 10;
xlabel=[]
ylabel=[]
for i in range(4,20+1):
ylabel.append(str(i))
for j in range(1,10+1):
xlabel.append(str(j))
# ordinary sample
#for 1,1 no Ace and stick
axes[0].set_xticks(range(0,10,1))
axes[0].set_xticklabels(xlabel)
axes[0].set_yticks(range(0,17,1) )
axes[0].set_yticklabels(ylabel)
axes[0].set_title('when no usable Ace and STICK',fontsize=FONT_SIZE)
im1 = axes[0].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE,STICK],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,2 no Ace and hit
axes[1].set_xticks(range(0,10,1))
axes[1].set_xticklabels(xlabel)
axes[1].set_yticks(range(0,17,1) )
axes[1].set_yticklabels(ylabel)
axes[1].set_title('when no usable Ace and HIT',fontsize=FONT_SIZE)
im1 = axes[1].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE,HIT],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,3 Ace and stick
axes[2].set_xticks(range(0,10,1))
axes[2].set_xticklabels(xlabel)
axes[2].set_yticks(range(0,17,1) )
axes[2].set_yticklabels(ylabel)
axes[2].set_title(' when usable Ace and STICK',fontsize=FONT_SIZE)
im1 = axes[2].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE,STICK],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,4 Ace and hit
axes[3].set_xticks(range(0,10,1))
axes[3].set_xticklabels(xlabel)
axes[3].set_yticks(range(0,17,1) )
axes[3].set_yticklabels(ylabel)
axes[3].set_title(' when usable Ace and HIT',fontsize=FONT_SIZE)
im1 = axes[3].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE,HIT],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
fig.suptitle(title,fontsize=15)
fig.colorbar(im1,ax=axes.ravel().tolist())
def visual_func_s_a_1_2(func,sub_limit,sup_limit,title):
fig, axes = plt.subplots(1,2,figsize=(30,50))
plt.subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=0.5,hspace=0.5)
FONT_SIZE = 10;
xlabel=[]
ylabel=[]
for i in range(4,20+1):
ylabel.append(str(i))
for j in range(1,10+1):
xlabel.append(str(j))
# ordinary sample
#for 1,1
axes[0].set_xticks(range(0,10,1))
axes[0].set_xticklabels(xlabel)
axes[0].set_yticks(range(0,17,1) )
axes[0].set_yticklabels(ylabel)
axes[0].set_title('when usable Ace',fontsize=FONT_SIZE)
im1 = axes[0].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_ABLE],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
#for 1,2
axes[1].set_xticks(range(0,10,1))
axes[1].set_xticklabels(xlabel)
axes[1].set_yticks(range(0,17,1) )
axes[1].set_yticklabels(ylabel)
axes[1].set_title('when no usable Ace',fontsize=FONT_SIZE)
im1 = axes[1].imshow(func[CARD_MINIMUM:CARD_MAXIMUM+1,SHOWN_NUMBER_MINIMUM:SHOWN_NUMBER_MAXIMUM+1,ACE_DISABLE],cmap=plt.cm.cool,vmin=sub_limit, vmax=sup_limit)
fig.suptitle(title,fontsize=15)
fig.colorbar(im1,ax=axes.ravel().tolist())
# main programme
#rewards obtained
Q_s_a_ordinary = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64);
Q_n_ordinary=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)));
V_s_ordinary = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64);
V_n_ordinary=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
Q_s_a_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64);
Q_ratio_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2,len(ACTION)),dtype = np.float64)
V_s_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64);
V_ratio_weigh = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2),dtype = np.float64)
# choose the policy to decide off-policy or on-policy
# initialization of policies
# TARGET_POLICY will change in policy improvement
BEHAVIOR_POLICY = b_a_s;
TARGET_POLICY = pi_a_s;
POLICY_UPDATION=[];
POLICY_UPDATION.append(copy.deepcopy(TARGET_POLICY));
xlabel=[];
policy_start=[];
policy_optimal=[];
# policy evaluation
for every_loop_improvement in range(0,LOOP_IMPROVEMENT):
for every_loop_evaluation in range(0,LOOP_EVALUATION):
S=[];
agent = Agent_rival_class();
rival = Agent_rival_class();
R_T = 0;
ratio = 1;
# obtain samples
# initialization of 21
if agent.state=='TOP' or rival.state=='TOP':
continue;
S.append([agent.total_card,rival.showncard,agent.usable_ace]);
while(agent.state=='NORMAL&HIT'):
# change the policy for behavioral policy
agent.behave(BEHAVIOR_POLICY);
S.append([agent.total_card,rival.showncard,agent.usable_ace]);
if agent.state == 'BREAK':
R_T = -1;
elif agent.state == 'TOP':
R_T = 1;
else:
while(rival.state=='NORMAL&HIT'):
rival.behave(pi_rival_a_s);
if rival.state == 'BREAK':
R_T = 1;
elif rival.state == 'TOP':
R_T = 0;
else:
if agent.total_card > rival.total_card:
R_T = 1;
elif agent.total_card < rival.total_card:
R_T = -1;
else:
R_T = 0;
# policy evaluation & policy improvement
G = R_T; # because R in the process is zero.
for i in range(1,len(agent.action_set)+1):
j = -i;
ratio *= TARGET_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j] ]/BEHAVIOR_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j] ];
# q_s_a for ordinary sample
Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] = Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] *\
Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]/(Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]+1) \
+ ratio*G/(Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]+1);
Q_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] +=1 ;
# V_s for ordinary sample
V_s_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] = V_s_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] *\
V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]/(V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]+1) \
+ ratio*G/(V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]]+1);
V_n_ordinary[S[j-1][0],S[j-1][1],S[j-1][2]] +=1 ;
# q_s_a for weighed sample
if ratio != 0 or Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] != 0:
Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] = Q_s_a_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] * \
Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] / (ratio + Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]) \
+ ratio * G / (ratio + Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]]) ;
Q_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2],agent.action_set[j]] += ratio;
# V_s for ordinary sample
if ratio != 0 or V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] != 0:
V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] = V_s_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] * \
V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] / (ratio + V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]]) \
+ ratio * G / (ratio + V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]]) ;
V_ratio_weigh[S[j-1][0],S[j-1][1],S[j-1][2]] += ratio;
# policy improvement
action_max =ACTION[ np.argmax( Q_s_a_ordinary[S[j-1][0],S[j-1][1],S[j-1][2],:] ) ];
TARGET_POLICY[ S[j-1][0],S[j-1][1] ,S[j-1][2] ,: ] = 0;
TARGET_POLICY[ S[j-1][0],S[j-1][1],S[j-1][2],action_max ] = 1;
if action_max != agent.action_set[j]:
POLICY_UPDATION.append(copy.deepcopy(TARGET_POLICY));
break;
# visualization
# policy optimal
POLICY_ORIGINAL = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
POLICY_RESULT = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
POLICY_RESULT_BY_POLICY = np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
for card_num in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for shown_num in range(SHOWN_NUMBER_MINIMUM,SHOWN_NUMBER_MAXIMUM+1):
for ace in range(0,2):
POLICY_ORIGINAL[card_num,shown_num,ace] = ACTION[ np.argmax( pi_a_s[card_num,shown_num,ace,:] ) ]
POLICY_RESULT[card_num,shown_num,ace] = ACTION[ np.argmax( Q_s_a_ordinary[card_num,shown_num,ace,:] ) ]
POLICY_RESULT_BY_POLICY[card_num,shown_num,ace] = ACTION[ np.argmax( TARGET_POLICY[card_num,shown_num,ace,:] ) ]
visual_func_s_a_1_2(POLICY_ORIGINAL,-1,1,'original policy')
print(len(POLICY_UPDATION))
for i in range(0,len(POLICY_UPDATION)):
if i%100000 == 0:
POLICY_MIDDLE=np.zeros((CARD_MAXIMUM+1,SHOWN_NUMBER_MAXIMUM+1,2));
for card_num in range(CARD_MINIMUM,CARD_MAXIMUM+1):
for shown_num in range(SHOWN_NUMBER_MINIMUM,SHOWN_NUMBER_MAXIMUM+1):
for ace in range(0,2):
POLICY_MIDDLE[card_num,shown_num,ace] = ACTION[ np.argmax( POLICY_UPDATION[i][card_num,shown_num,ace,:] ) ]
visual_func_s_a_1_2(POLICY_MIDDLE,-1,1,'policy loop number: '+str(i));
visual_func_s_a_1_2(POLICY_RESULT,-1,1,'optimal policy');
plt.show();
'''
# visualization
# for state-action function
# oridnary sample
visual_func_s_a_1_4(Q_s_a_ordinary,-1,1,'state-action function in ordinary sample')
# weighed sample
visual_func_s_a_1_4(Q_s_a_weigh,-1,1,'state-action function in weighed sample')
# for value function
# ordinary sample
visual_func_s_a_1_2(V_s_ordinary,-1,1,'value function in ordinary sample')
# weighed sample
visual_func_s_a_1_2(V_s_weigh,-1,1,'value function in weighed sample')
# optimal policy show
visual_func_s_a_1_2(POLICY_RESULT,-1,1,'optimal policy by q_a_s')
# updation number
visual_func_s_a_1_4(Q_n_ordinary,0,300,'number')
plt.show();
'''
Result
After many loops( 10^6 ), the result still does not converge. After we check the updation number in every state&action pairs in below picture. We could see in many places, there are still very few visits. So how to guarantee the exploration will be the key of improving quality of off-policy.
This is the show of course of policy improvement.
Reference resources :
边栏推荐
- Discrete-event system
- Opencv Harris corner detection
- Leetcode - 933 number of recent requests
- ADS simulation design of class AB RF power amplifier
- Opencv image rotation
- CV learning notes - camera model (Euclidean transformation and affine transformation)
- Interruption system of 51 single chip microcomputer
- Vgg16 migration learning source code
- Circular queue related design and implementation reference 1
- Tensorflow2.0 save model
猜你喜欢
[combinatorics] Introduction to Combinatorics (combinatorial idea 3: upper and lower bound approximation | upper and lower bound approximation example Remsey number)
LeetCode - 1670 设计前中后队列(设计 - 两个双端队列)
LeetCode - 706 设计哈希映射(设计) *
Pycharm cannot import custom package
2312. Selling wood blocks | things about the interviewer and crazy Zhang San (leetcode, with mind map + all solutions)
Adaptiveavgpool1d internal implementation
Leetcode - 933 number of recent requests
1. Finite Markov Decision Process
Openeuler kernel technology sharing - Issue 1 - kdump basic principle, use and case introduction
yocto 技術分享第四期:自定義增加軟件包支持
随机推荐
Adaptiveavgpool1d internal implementation
Mise en œuvre d'OpenCV + dlib pour changer le visage de Mona Lisa
2021-10-27
On the problem of reference assignment to reference
LeetCode - 673. Number of longest increasing subsequences
ADS simulation design of class AB RF power amplifier
Leetcode-112:路径总和
It is difficult to quantify the extent to which a single-chip computer can find a job
Vscode markdown export PDF error
Leetcode - 895 maximum frequency stack (Design - hash table + priority queue hash table + stack)*
Google browser plug-in recommendation
Development of intelligent charging pile (I): overview of the overall design of the system
The data read by pandas is saved to the MySQL database
My openwrt learning notes (V): choice of openwrt development hardware platform - mt7688
Interruption system of 51 single chip microcomputer
When the reference is assigned to auto
Opencv notes 17 template matching
The new series of MCU also continues the two advantages of STM32 product family: low voltage and energy saving
LeetCode - 715. Range 模块(TreeSet) *****
4G module IMEI of charging pile design