当前位置:网站首页>【TFLite, ONNX, CoreML, TensorRT Export】
【TFLite, ONNX, CoreML, TensorRT Export】
2022-07-05 11:34:00 【网络星空(luoc)】
文章目录
This guide explains how to export a trained YOLOv5 model from PyTorch to ONNX and TorchScript formats. UPDATED 18 May 2022.
Before You Start
Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7. Models and datasets download automatically from the latest YOLOv5 release.
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
For TensorRT export example (requires GPU) see our Colab notebook appendix section. Open In Colab
Formats
YOLOv5 inference is officially supported in 11 formats:
ProTip: TensorRT may be up to 2-5X faster than PyTorch on GPU
ProTip: ONNX and OpenVINO may be up to 2-3X faster than PyTorch on CPU
Export a Trained YOLOv5 Model
This command exports a pretrained YOLOv5s model to TorchScript and ONNX formats. yolov5s.pt
is the ‘small’ model, the second smallest model available. Other options are yolov5n.p
t, yolov5m.p
t, yolov5l.pt
and yolov5x.pt
, along with their P6 counterparts i.e. yolov5s6.pt
or you own custom training checkpoint i.e. runs/exp/weights/best.pt
. For details on all available models please see our README table.
python path/to/export.py --weights yolov5s.pt --include torchscript onnx
Output:
export: data=data/coco128.yaml, weights=yolov5s.pt, imgsz=[640, 640], batch_size=1, device=cpu, half=False, inplace=False, train=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=12, verbose=False, workspace=4, nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, include=['torchscript', 'onnx']
YOLOv5 v6.0-241-gb17c125 torch 1.10.0 CPU
Fusing layers...
Model Summary: 213 layers, 7225885 parameters, 0 gradients
PyTorch: starting from yolov5s.pt (14.7 MB)
TorchScript: starting export with torch 1.10.0...
TorchScript: export success, saved as yolov5s.torchscript (29.4 MB)
ONNX: starting export with onnx 1.10.2...
ONNX: export success, saved as yolov5s.onnx (29.3 MB)
Export complete (7.63s)
Results saved to /Users/glennjocher/PycharmProjects/yolov5
Detect: python detect.py --weights yolov5s.onnx
PyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.onnx')
Validate: python val.py --weights yolov5s.onnx
Visualize: https://netron.app
The 3 exported models will be saved alongside the original PyTorch model:
Netron Viewer is recommended for visualizing exported models:
Example Usage of exported models
export.py will show Usage examples for the last export format indicated. For example for ONNX:
detect.py
runs inference on exported models:
python path/to/detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
val.py
runs validation on exported models:
python path/to/val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s.xml # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS Only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
OpenCV DNN C++
Examples of YOLOv5 OpenCV DNN C++ inference on exported ONNX models can be found at
https://github.com/Hexmagic/ONNX-yolov5/blob/master/src/test.cpp
https://github.com/doleron/yolov5-opencv-cpp-python
Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
Google Colab and Kaggle notebooks with free GPU: Open In Colab Open In Kaggle
Google Cloud Deep Learning VM. See GCP Quickstart Guide
Amazon Deep Learning AMI. See AWS Quickstart Guide
Docker Image. See Docker Quickstart Guide Docker Pulls
Status
If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
边栏推荐
- Startup process of uboot:
- Cdga | six principles that data governance has to adhere to
- Summary of thread and thread synchronization under window
- How can edge computing be combined with the Internet of things?
- pytorch-线性回归
- C # to obtain the filtered or sorted data of the GridView table in devaexpress
- Spark Tuning (I): from HQL to code
- AUTOCAD——遮罩命令、如何使用CAD对图纸进行局部放大
- 【爬虫】wasm遇到的bug
- MySQL statistical skills: on duplicate key update usage
猜你喜欢
COMSOL -- three-dimensional graphics random drawing -- rotation
CDGA|数据治理不得不坚持的六个原则
pytorch训练进程被中断了
石油化工企业安全生产智能化管控系统平台建设思考和建议
The ninth Operation Committee meeting of dragon lizard community was successfully held
Redis集群(主从)脑裂及解决方案
高校毕业求职难?“百日千万”网络招聘活动解决你的难题
11.(地图数据篇)OSM数据如何下载使用
redis 集群模式原理
COMSOL--三维随便画--扫掠
随机推荐
COMSOL--建立几何模型---二维图形的建立
汉诺塔问题思路的证明
查看多台机器所有进程
基于Lucene3.5.0怎样从TokenStream获得Token
shell脚本文件遍历 str转数组 字符串拼接
7.2 daily study 4
How to understand super browser? What scenarios can it be used in? What brands are there?
技术管理进阶——什么是管理者之体力、脑力、心力
龙蜥社区第九次运营委员会会议顺利召开
-26374 and -26377 errors during coneroller execution
Risc-v-qemu-virt in FreeRTOS_ Scheduling opportunity of GCC
Implementation of array hash function in PHP
阻止瀏覽器後退操作
pytorch-线性回归
The art of communication III: Listening between people
An error is reported in the process of using gbase 8C database: 80000305, host IPS long to different cluster. How to solve it?
[crawler] bugs encountered by wasm
Programmers are involved and maintain industry competitiveness
7 大主题、9 位技术大咖!龙蜥大讲堂7月硬核直播预告抢先看,明天见
Manage multiple instagram accounts and share anti Association tips