当前位置:网站首页>Yahoo! Answers-数据集
Yahoo! Answers-数据集
2022-08-03 12:29:00 【51CTO】
来自雅虎 Yahoo! Answers Comprehensive Questions and Answers1.0 数据集的 10 个主要分类数据。每个类 别分别包含 140,000 个训练样本和 5,000 个测试样本。
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
译:
本文对字符级卷积网络(ConvNets)在文本分类中的应用进行了实证研究。我们构建了几个大规模的数据集,以证明字符级卷积网络可以达到最先进或最具竞争力的结果。比较了传统模型,如单词包、n-grams及其TFIDF变体,以及基于单词的ConvNets和递归神经网络等深度学习模型。
大家可以到官网地址下载数据集,我自己也在百度网盘分享了一份。可关注本人公众号,回复“2020082503”获取下载链接。
只要自己有时间,都尽量写写文章,与大家交流分享。
本人公众号:

边栏推荐
猜你喜欢

Sogou news-数据集

PolarFormer: Multi-camera 3D Object Detection with Polar Transformers 论文笔记

How to do App Automation Testing?Practical sharing of the whole process of App automation testing

How to build an overseas purchasing system/purchasing website - source code analysis

nacos应用

从器件物理级提升到电路级

【云原生 · Kubernetes】部署Kubernetes集群

欧曼自动挡、银河大马力、行星新产品 欧曼全新产品以燎原之势赢领市场

Oracle安装完毕(系统盘),从系统盘转移到数据盘

Station B responded that "HR said that core users are all Loser": the interviewer was persuaded to quit at the end of last year and will learn lessons to strengthen management
随机推荐
期货开户中常见问题汇总
self-discipline
R语言拟合ARIMA模型并使用拟合模型进行预测推理、使用autoplot函数可视化ARIMA模型预测结果、可视化包含置信区间的预测结果
通过点击CheckBox实现背景变换小案例
海外代购系统/代购网站怎么搭建——源码解析
图像融合SDDGAN文章学习
信创建设看广州|海泰方圆亮相2022 信创生态融合发展论坛
Using the Work Queue Manager (4)
php microtime encapsulates the tool class, calculates the running time of the interface (breakpoint)
链游NFT元宇宙游戏系统开发技术方案及源码
【实战技能】单片机bootloader的CANFD,I2C,SPI和串口方式更新APP视频教程(2022-08-01)
常用lambda表达式
特征降维学习笔记(pca和lda)(1)
7月份最后一篇博客
Redis连接池工具类
【Verilog】HDLBits题解——验证:阅读模拟
Mysql重启后innodb和myisam插入的主键id变化总结
bash for loop
(通过页面)阿里云云效上传jar
From the physical level of the device to the circuit level