当前位置:网站首页>Image fusion SDDGAN article learning
Image fusion SDDGAN article learning
2022-08-03 12:22:00 【qq_46165876】
Semantic-supervised Infrared and Visible Image Fusion via a Dual-discriminator Generative Adversarial Network article study
Model Framework
The network structure of our generator G is shown in the figure.We concatenate the infrared and visible images in the channel dimension and use them as input to g.The output is the final fused image.g consists of five common convolutional layers.For each convolutional layer, the padding is set to the same and the stride is set to 1.Therefore, the size of the feature map will not change.
There are two discriminators Dr and Dv in our network.They have the same architecture.They both function as classifiers, generating scalars to estimate the probability that the input image comes from real data rather than G.
Loss function
Generator loss function
The generator loss LG includes supervision loss Lsup, adversarial loss Ladv, gradient loss Lgrad and MSE loss Lmse.
Supervised Loss Lsup
Against Loss Ladv
Gradient Loss Lgrad
The fourth loss, Lmse, represents the mse loss.We apply the MSE loss to constrain the fused image to contain considerable information from the source image, which can be defined as:
Discriminator loss function
边栏推荐
猜你喜欢
随机推荐
pytorch+tensorboard使用方法
第5章 实现首页Tab数据展示
为什么越来越多的开发者放弃使用Postman,而选择Eolink?
[Verilog] HDLBits Problem Solution - Circuits/Sequential Logic/Latches and Flip-Flops
From scratch Blazor Server (6) - authentication based on strategy
Unsupervised learning KMeans notes and examples
Matlab学习12-图像处理之图像增强
php microtime 封装工具类,计算接口运行时间(打断点)
别再用if-else了,分享一下我使用“策略模式”的项目经验...
数据库系统原理与应用教程(075)—— MySQL 练习题:操作题 151-159(十九):综合练习
R语言拟合ARIMA模型并使用拟合模型进行预测推理、使用autoplot函数可视化ARIMA模型预测结果、可视化包含置信区间的预测结果
随机森林项目实战---气温预测
ssh 免密登录了解下
Feature dimensionality reduction study notes (pca and lda) (1)
bash case usage
秋招招工作
What knowledge points do you need to master to learn software testing?
【云原生 · Kubernetes】部署Kubernetes集群
论文理解:“Gradient-enhanced physics-informed neural networks for forwardand inverse PDE problems“
长江商业银行面试