当前位置:网站首页>Installation and configuration of Spark and related ecological components - quick recall
Installation and configuration of Spark and related ecological components - quick recall
2022-08-02 15:28:00 【Hongyao】
目录
Scala安装配置
- 先安装java
- 安装路径
- 环境变量
# Scala Env
export PATH=$PATH:/usr/local/scala/bin
- 命令
scala- 退出
:quit
- 退出
Spark安装配置
- 安装路径
/usr/local/spark
环境变量
# Spark Env
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
Spark集群配置
cd $SPARK_HOME/conf
cp slaves.template slaves
slaves
hadoophost
## slave01 ##多个工作节点时配置对应的主机名
## slave02 ##多个工作节点时配置对应的主机名
spark-env.sh
cp spark-env.sh.template spark-env.sh
修改spark-env.sh文件内容
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SPARK_MASTER_IP=hadoophost ##(或者配置主机IP)
配置好后,将Master主机上的/usr/local/spark文件夹复制到各个节点上.在Master主机上执行如下命令:
cd /usr/local/
tar -zcf ~/spark.master.tar.gz ./spark
cd ~
scp ./spark.master.tar.gz slave01:/home/hadoop
scp ./spark.master.tar.gz slave02:/home/hadoop
多个worker节点时,需要在每个worker节点中如slave01,slave02节点上分别执行下面同样的操作:
sudo rm -rf /usr/local/spark/
sudo tar -zxf ~/spark.master.tar.gz -C /usr/local
sudo chown -R hadoop /usr/local/spark
Spark命令
在Master主机上运行命令
start-all.sh #启动所有节点,和hadoop的命令冲突,建议重命名为spark-start-all.sh
stop-all.sh # 建议重命名为spark-start-all.sh
start-master.sh #启动主节点
stop-master.sh
start-slaves.sh #启动从节点
stop-slaves.sh
spark命令和hadoop的命令冲突,建议重命名
cd $SPARK_HOME/sbin
mv start-all.sh spark-start-all.sh
mv stop-all.sh spark-stop-all.sh
参数
--master
执行
spark-shell #Spark Shell
spark-submit
--class <main-class> //需要运行的程序的主类,应用程序的入口点
--master <master-url> //Master URL,下面会有具体解释
--deploy-mode <deploy-mode> //部署模式
--driver-class-path //驱动的类路径
... # other options //其他参数
<application-jar> //应用程序JAR包
[application-arguments] //传递给主类的主方法的参数
–master
local 使用一个Worker线程本地化运行SPARK(完全不并行)
local[*] 使用逻辑CPU个数数量的线程来本地化运行Spark
local[K] 使用K个Worker线程本地化运行Spark(理想情况下,K应该根据运行机器的CPU核数设定)
spark://HOST:PORT 连接到指定的Spark standalone master.默认端口是7077.
yarn-client 以客户端模式连接YARN集群.集群的位置可以在HADOOP_CONF_DIR 环境变量中找到.
yarn-cluster 以集群模式连接YARN集群.集群的位置可以在HADOOP_CONF_DIR 环境变量中找到.
mesos://HOST:PORT 连接到指定的Mesos集群.默认接口是5050.
Spark的Hive支持配置
添加hive配置文件
cp $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf
添加mysql驱动
将mysql-connector-java-5.1.49-bin.jar放到$SPARK_HOME/jars/ext下
配置文件
spark-env.sh
export JAVA_HOME=/usr/lib/java/jdk1.8.0_271
export CLASSPATH=$CLASSPATH:/usr/local/hive/lib
export SCALA_HOME=/usr/local/scala
export HIVE_CONF_DIR=/usr/local/hive/conf
spark-defaults.conf
cp spark-defaults.conf.template spark-defaults.conf
spark.driver.extraClassPath=/usr/local/spark/jars/ext/*
测试
spark-shell
整段复制命令即可
import org.apache.spark.sql.SparkSession
val warehouseLocation = "spark-warehouse"
val spark = SparkSession.builder().appName("Spark Hive Example").config("spark.sql.warehouse.dir", warehouseLocation).enableHiveSupport().getOrCreate()
import spark.implicits._
spark.sql("CREATE DATABASE IF NOT EXISTS sparktest")
Kafka安装配置
- 安装到/usr/local/kafka
环境变量
#KAFKA Env
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin
Kafka配置
cd $KAFKA_HOME/config
server.properties
zookeeper.connect=hadoophost:2181
Kafka命令
kafka-server-start.sh $KAFKA_HOME/config/server.properties
外部支持
SparkStreaming
将spark-streaming-kafka-0-10_2.12-2.4.0.jar放到$SPARK_HOME/jars/ext下
spark-submit时添加–driver-class-path
spark-submit --driver-class-path $SPARK_HOME/jars/ext/*:$KAFKA_HOME/libs/* 其他参数...
Flume安装配置
flume下载地址: https://mirrors.tuna.tsinghua.edu.cn/apache/flume/1.9.0/
/usr/local/flume
环境变量
# Flume Env
export FLUME_HOME=/usr/local/flume
export FLUME_CONF_DIR=$FLUME_HOME/conf
export PATH=$PATH:$FLUME_HOME/bin
Flume配置
cd $FLUME_HOME/conf
flume-env.sh
cp flume-env.sh.template flume-env.sh
export JAVA_HOME=/usr/lib/java/jdk1.8.0_271
问题处理
找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty问题
如果系统里安装了hbase,会出现错误: 找不到或无法加载主类 org.apache.flume.tools.GetJavaProperty.如果没有安装hbase,这一步可以略过.
修改flume-ng脚本,找到如下local HBASE_JAVA_LIBRARY_PATH这个配置项,在最后增加“2>/dev/null | grep hbase”
cd $FLUME_HOME/bin
Flume命令
flume-ng version #查看flume版本信息
外部支持
SparkStreaming
将spark-streaming-flume_2.11-2.1.0.jar放到$SPARK_HOME/jars/ext下(可以通过maven下载到)
spark-submit时添加–driver-class-path
spark-submit --driver-class-path $SPARK_HOME/jars/ext/*:$FLUME_HOME/libs/* 其他参数...
边栏推荐
- Win10 computer can't read U disk?Don't recognize U disk how to solve?
- yolov5官方代码解读——前向传播
- 日常-笔记
- FP7195降压恒流PWM转模拟调光零压差大功率驱动方案原理图
- 【STM32学习1】基础知识与概念明晰
- cmake配置libtorch报错Failed to compute shorthash for libnvrtc.so
- DP1332E内置c8051的mcu内核NFC刷卡芯片国产兼容NXP
- 7. How to add the Click to RecyclerView and LongClick events
- Mysql的锁
- jest test, component test
猜你喜欢
随机推荐
The SSE instructions into ARM NEON
Fast advanced TypeScript
LORA芯片ASR6505无线远距离传输8位MCU
Summarize computer network super comprehensive test questions
Detailed explanation of RecyclerView series article directory
IPV4和IPV6是什么?
In-depth understanding of Golang's Map
Use tencent cloud builds a personal blog
C语言函数参数传递模式入门详解
一篇文章彻底理解Redis的持久化:RDB、AOF
刷卡芯片CI520可直接PIN对PIN替换CV520支持SPI通讯接口
Mysql之MVCC
cmake configure libtorch error Failed to compute shorthash for libnvrtc.so
Failed to install using npx -p @storybook/cli sb init, build a dedicated storybook by hand
Binder机制(中篇)
HAL框架
Win11 system cannot find dll file how to fix
单端K总线收发器DP9637兼容L9637
source /build/envsetup.sh和lunch)
Win10 Settings screen out from lack of sleep?Win10 set the method that never sleep









