当前位置:网站首页>[set theory] ordered pair (ordered pair | ordered triple | ordered n ancestor)
[set theory] ordered pair (ordered pair | ordered triple | ordered n ancestor)
2022-07-03 04:12:00 【Programmer community】
List of articles
- One 、 Ordered pair
- Two 、 Lemma of ordered pair properties 、 Theorem
- 3、 ... and 、 Ordered triples
- Four 、 Orderly n Tuple property theorem
One 、 Ordered pair
Ordered pair concept :
<
a
,
b
>
=
{
{
a
}
,
{
a
,
b
}
}
<a, b> = \{ \{ a \} , \{ a , b \} \}
<a,b>={ { a},{ a,b}}
among
a
a
a It's the first element ,
b
b
b It's the second element ;
Remember to do
<
a
,
b
>
<a, b>
<a,b> , You can also remember to do
(
a
,
b
)
(a , b)
(a,b)
understand 1 :
a
,
b
a, b
a,b There is a sequence , The element in the collection of single elements is the first element , The other element in the set of two elements is the second element ;
understand 2 ( recommend ) : The first element appears in each subset , The second element only appears in a subset , In this way , Ensures the definition of ordered pairs , Two elements before and after , The sequence is different , The corresponding ordered pairs are different ;
Here are the different ordered pairs of the same two elements :
Ordered pair
<
a
,
b
>
=
{
{
a
}
,
{
a
,
b
}
}
<a, b> = \{ \{ a \} , \{ a , b \} \}
<a,b>={ { a},{ a,b}}
Ordered pair
<
b
,
a
>
=
{
{
b
}
,
{
a
,
b
}
}
<b, a> = \{ \{ b \} , \{ a , b \} \}
<b,a>={ { b},{ a,b}}
Two 、 Lemma of ordered pair properties 、 Theorem
1. lemma 1 :
{
x
,
a
}
=
{
x
,
b
}
\{ x , a \} = \{ x, b \}
{ x,a}={ x,b}
⇔
\Leftrightarrow
⇔
a
=
b
a=b
a=b
If two sets are equal , If and only if
a
=
b
a = b
a=b ;
2. lemma 2 : if
A
=
B
≠
∅
\mathscr{A} = \mathscr{B} \not= \varnothing
A=B=∅ , Then there are
①
⋃
A
=
⋃
B
\bigcup \mathscr{A} = \bigcup \mathscr{B}
⋃A=⋃B
②
⋂
A
=
⋂
B
\bigcap \mathscr{A} = \bigcap \mathscr{B}
⋂A=⋂B
explain : Set family
A
\mathscr{A}
A And Set family
B
\mathscr{B}
B equal , also Neither set family is empty , that The generalized intersection of two set families is equal , The generalized union of two set families is also equal ;
3. Theorem :
<
a
,
b
>
=
<
c
,
d
>
<a,b> = <c, d>
<a,b>=<c,d>
⇔
\Leftrightarrow
⇔
a
=
c
∧
b
=
d
a = c \land b = d
a=c∧b=d
Through the above theorem , It shows that ordered pairs are ordered ;
4. inference :
a
≠
b
a \not= b
a=b
⇒
\Rightarrow
⇒
<
a
,
b
>
≠
<
b
,
a
>
<a,b> \not= <b, a>
<a,b>=<b,a>
3、 ... and 、 Ordered triples
Ordered triples :
<
a
,
b
,
c
>
=
<
<
a
,
b
>
,
c
>
<a, b, c> = < <a, b> , c >
<a,b,c>=<<a,b>,c>
Ordered triples are ordered triples first , The third element is after , The order of composition is right ;
Orderly
n
n
n Yuan Zu :
n
≥
2
n \geq 2
n≥2
<
a
1
,
a
2
,
⋯
,
a
n
>
=
<
<
a
1
,
⋯
,
a
n
−
1
>
,
a
n
>
<a_1, a_2, \cdots , a_n> = < <a_1, \cdots , a_{n-1}> , a_n >
<a1,a2,⋯,an>=<<a1,⋯,an−1>,an>
Take it first
n
−
1
n-1
n−1 Elements form an order
n
−
1
n-1
n−1 Yuan Zu , The
n
−
1
n-1
n−1 Yuanzu was in front , Then follow No
n
n
n Elements
a
n
a_n
an After , Form an orderly pair ;
Four 、 Orderly n Tuple property theorem
Orderly
n
n
n Tuple property theorem :
<
a
1
,
a
2
,
⋯
,
a
n
>
=
<
b
1
,
b
2
,
⋯
,
b
n
>
<a_1, a_2, \cdots , a_n> = <b_1, b_2, \cdots , b_n>
<a1,a2,⋯,an>=<b1,b2,⋯,bn>
⇔
\Leftrightarrow
⇔
a
i
=
b
i
,
i
=
1
,
2
,
⋯
,
n
a_i = b_i , i = 1, 2, \cdots , n
ai=bi,i=1,2,⋯,n
explain : Two in order
n
n
n Yuan Zu , The elements in each corresponding position are the same , Two
n
n
n Tuples are equal only when they are ordered ;
边栏推荐
- [brush questions] most elements (super water king problem)
- 【刷题篇】接雨水(一维)
- How to connect WiFi with raspberry pie
- [Blue Bridge Road -- bug free code] DS18B20 temperature reading code analysis
- 105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
- golang xxx. Go code template
- MySQL timestampdiff interval
- Interface embedded in golang struct
- Is it better to speculate in the short term or the medium and long term? Comparative analysis of differences
- When writing a web project, SmartUpload is used for file upload and new string () is used for transcoding, but in the database, there will still be random codes similar to poker
猜你喜欢
Is pytorch difficult to learn? How to learn pytorch well?
[brush questions] most elements (super water king problem)
国产PC系统完成闭环,替代美国软硬件体系的时刻已经到来
[NLP]—sparse neural network最新工作简述
[brush questions] find the number pair distance with the smallest K
When writing a web project, SmartUpload is used for file upload and new string () is used for transcoding, but in the database, there will still be random codes similar to poker
JS realizes lazy loading of pictures
【毕业季·进击的技术er】职场人的自白
Five elements of user experience
redis 持久化原理
随机推荐
[Blue Bridge Road -- bug free code] DS18B20 temperature reading code analysis
[mathematical logic] predicate logic (judge whether the first-order predicate logic formula is true or false | explain | example | predicate logic formula type | forever true | forever false | satisfi
How to execute a swift for in loop in one step- How can I do a Swift for-in loop with a step?
105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
How to connect WiFi with raspberry pie
服务器无法远程连接原因分析
学会pytorch能干什么?
Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
How does the pytorch project run?
[mathematical logic] predicate logic (first-order predicate logic formula | example)
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
在写web项目的时候,文件上传用到了smartupload,用了new string()进行转码,但是在数据库中,还是会出现类似扑克的乱码
[set theory] set concept and relationship (true subset | empty set | complete set | power set | number of set elements | power set steps)
Database management tool, querious direct download
Analysis of the reason why the server cannot connect remotely
拆一辆十万元的比亚迪“元”,快来看看里面的有哪些元器件。
Social phobia of contemporary young people (III)
CVPR 2022 | 大连理工提出自校准照明框架,用于现实场景的微光图像增强
x Problem B
[mathematical logic] predicate logic (predicate logic basic equivalent | eliminate quantifier equivalent | quantifier negative equivalent | quantifier scope contraction expansion equivalent | quantifi