当前位置:网站首页>【九阳神功】2022复旦大学应用统计真题+解析
【九阳神功】2022复旦大学应用统计真题+解析
2022-07-06 09:20:00 【大师兄统计】
真题部分
一、(20分) 袋子里有: a a a红球, a a a黄球, b b b蓝球. 有放回摸3个球, 设 A = { A=\{ A={ 抽出的求有黄球也有红球, 且红球比黄球先取出 } \} }. 求:
(1)(10分) P ( A ) P(A) P(A);
(2)(10分) 若 { \{ { 没有摸到蓝球 } \} }与 A A A概率相同, 求 a : b a:b a:b.
二、(10分) 离散型随机变量 X X X的分布列是
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, 其中 a < b < a + 1 a<b<a+1 a<b<a+1. 求其方差的取值范围.
三、(20分) 离散型随机变量 X X X只取 x , x + a x,x+a x,x+a两个值, 其中 a > 0 a>0 a>0, 且 V a r ( X ) = 1 Var(X)=1 Var(X)=1, 求 a a a的取值范围及 X X X的分布列.
四、(20分) 设有随机向量 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), 已知它经过任意旋转变换后 ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY)仍与 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY)同分布, 试解决下述问题:
(1) 求 P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) 求 Y X \frac{Y}{X} XY的分布.
五、(20分) 已知 ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), 求 P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
六、(10分) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯是i.i.d.的二阶矩存在随机变量, Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, 问: { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}是否服从大数定律.
七、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的随机变量, F F F是其分布函数, 求 − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi)的分布.
八、(10分) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6是i.i.d.的 U ( 0 , 1 ) U(0,1) U(0,1)随机变量, 求 V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
九、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xni是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 设 a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3)是 θ \theta θ的无偏估计, 求 a , b a,b a,b并比较它们的何者更有效.
十、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 N ( μ , 16 ) N(\mu,16) N(μ,16)随机样本, μ \mu μ的先验分布是 N ( a , b 2 ) N(a,b^2) N(a,b2), 求后验分布.
十一、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 考虑假设检验问题
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1构造拒绝域 W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. 回答下述问题:
(1)(5分) α = 0.05 \alpha = 0.05 α=0.05, 求 c c c;
(2)(5分) 当 θ = 1.5 \theta=1.5 θ=1.5, 为使得犯第二类错误的概率 β ≤ 0.1 \beta\le 0.1 β≤0.1, 求至少要多少样本量.
解析部分
一、(20分) 袋子里有: a a a红球, a a a黄球, b b b蓝球. 有放回摸3个球, 设 A = { A=\{ A={ 抽出的求有黄球也有红球, 且红球比黄球先取出 } \} }. 求:
(1)(10分) P ( A ) P(A) P(A);
(2)(10分) 若 { \{ { 没有摸到蓝球 } \} }与 A A A概率相同, 求 a : b a:b a:b.
Solution:
[注]: 题干可以理解成 A 1 = { A_1=\{ A1={ 有一个红球比黄球先取出 } \} }, 也可以理解成 A 2 = { A_2=\{ A2={ 所有红球比黄球先取出 } \} }.
(1) 先考虑 A 1 A_1 A1, 有
A 1 = { 红红黄 , 红黄红 , 红黄黄 , 蓝红黄 , 红蓝黄 , 红黄蓝 } , A_1=\left\{ \text{红红黄}, \text{红黄红}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} , A1={ 红红黄,红黄红,红黄黄,蓝红黄,红蓝黄,红黄蓝},故有
P ( A 1 ) = a 3 + a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = 3 a 2 ( a + b ) ( 2 a + b ) 3 . P\left( A_1 \right) =\frac{a^3+a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{3a^2\left( a+b \right)}{\left( 2a+b \right) ^3}. P(A1)=(2a+b)3a3+a3+a3+3a2b=(2a+b)33a2(a+b). 再考虑 A 2 A_2 A2, 有
A 2 = { 红红黄 , 红黄黄 , 蓝红黄 , 红蓝黄 , 红黄蓝 } , A_2=\left\{ \text{红红黄}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} , A2={ 红红黄,红黄黄,蓝红黄,红蓝黄,红黄蓝}, 故有
P ( A 2 ) = a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = a 2 ( 2 a + 3 b ) ( 2 a + b ) 3 . P\left( A_2 \right) =\frac{a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{a^2\left( 2a+3b \right)}{\left( 2a+b \right) ^3}. P(A2)=(2a+b)3a3+a3+3a2b=(2a+b)3a2(2a+3b). (2) 先计算 B = { B=\{ B={ 没有摸到蓝球 } \} }, 有
P ( B ) = ( 2 a 2 a + b ) 3 = 8 a 3 ( 2 a + b ) 3 , P\left( B \right) =\left( \frac{2a}{2a+b} \right) ^3=\frac{8a^3}{\left( 2a+b \right) ^3}, P(B)=(2a+b2a)3=(2a+b)38a3, 若 P ( B ) = P ( A 1 ) P(B)=P(A_1) P(B)=P(A1), 即
8 a 3 = 3 a 2 ( a + b ) * 8 a = 3 ( a + b ) * a b = 3 5 . 8a^3=3a^2\left( a+b \right) \,\,\Longrightarrow \,\,8a=3\left( a+b \right) \,\,\Longrightarrow \frac{a}{b}=\frac{3}{5}. 8a3=3a2(a+b)*8a=3(a+b)*ba=53. 若 P ( B ) = P ( A 2 ) P(B)=P(A_2) P(B)=P(A2), 即
8 a 3 = a 2 ( 2 a + 3 b ) * 8 a = 2 a + 3 b * a b = 1 2 . 8a^3=a^2\left( 2a+3b \right) \,\,\Longrightarrow \,\,8a=2a+3b\,\,\Longrightarrow \frac{a}{b}=\frac{1}{2}. 8a3=a2(2a+3b)*8a=2a+3b*ba=21.
二、(10分) 离散型随机变量 X X X的分布列是
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, 其中 a < b < a + 1 a<b<a+1 a<b<a+1. 求其方差的取值范围.
Solution:
由于 V a r ( X ) = V a r ( X − a ) Var(X)=Var(X-a) Var(X)=Var(X−a), 故不妨假设 X X X的取值是
P ( X = 0 ) = P ( X = c ) = P ( X = 1 ) = 1 3 , P(X=0)=P(X=c)=P(X=1)=\frac{1}{3}, P(X=0)=P(X=c)=P(X=1)=31, 其中 c = b − a ∈ ( 0 , 1 ) c=b-a\in (0,1) c=b−a∈(0,1), 故有 E X = c + 1 3 EX=\frac{c+1}{3} EX=3c+1, 而
E X 2 = c 2 + 1 3 , V a r ( X ) = 3 c 2 + 3 − ( c + 1 ) 2 9 = 2 9 [ ( c − 1 2 ) 2 + 3 4 ] ∈ [ 1 6 , 2 9 ) . EX^2 = \frac{c^2+1}{3},\quad Var(X)=\frac{3c^2+3-(c+1)^2}{9}=\frac{2}{9}\left[ \left( c-\frac{1}{2} \right) ^2+\frac{3}{4} \right] \in \left[ \frac{1}{6},\frac{2}{9} \right) . EX2=3c2+1,Var(X)=93c2+3−(c+1)2=92[(c−21)2+43]∈[61,92).
三、(20分) 离散型随机变量 X X X只取 x , x + a x,x+a x,x+a两个值, 其中 a > 0 a>0 a>0, 且 V a r ( X ) = 1 Var(X)=1 Var(X)=1, 求 a a a的取值范围及 X X X的分布列.
Solution:
题目只给了方差的条件, 而 V a r ( X ) = V a r ( X − x ) Var(X)=Var(X-x) Var(X)=Var(X−x), 故不妨先假设 X X X只取 0 , a 0,a 0,a两个值, 且
V a r ( X ) = a 2 p − a 2 p 2 = a 2 p ( 1 − p ) = 1 , Var\left( X \right) =a^2p-a^2p^2=a^2p\left( 1-p \right) =1, Var(X)=a2p−a2p2=a2p(1−p)=1, 其中 p = P ( X = a ) p=P(X=a) p=P(X=a), 由于 p ( 1 − p ) ≤ 1 4 p(1-p)\le \frac{1}{4} p(1−p)≤41, 因此 a ≥ 2 a\ge 2 a≥2. 且当 a a a给定时, p p p是可以解出的, 即
p 2 − p + 1 a = 0 * p = 1 ± 1 − 4 a 2 . p^2-p+\frac{1}{a}=0 \Longrightarrow p=\frac{1\pm \sqrt{1-\frac{4}{a}}}{2}. p2−p+a1=0*p=21±1−a4. 所以 X X X的分布列是
P ( X = x ) = 1 + 1 − 4 a 2 , P ( X = x + a ) = 1 − 1 − 4 a 2 , P\left( X=x \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2}, P(X=x)=21+1−a4,P(X=x+a)=21−1−a4, 或者是
P ( X = x ) = 1 − 1 − 4 a 2 , P ( X = x + a ) = 1 + 1 − 4 a 2 . P\left( X=x \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2}. P(X=x)=21−1−a4,P(X=x+a)=21+1−a4.
四、(20分) 设有随机向量 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), 已知它经过任意旋转变换后 ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY)仍与 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY)同分布, 试解决下述问题:
(1) 求 P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) 求 Y X \frac{Y}{X} XY的分布.
Solution:
(1) 设 X , Y X,Y X,Y的密度函数是 f X , Y ( x , y ) f_{X,Y}(x,y) fX,Y(x,y), 对旋转变换 ( U , V ) = ( X , Y ) A T (U,V)=(X,Y)A^T (U,V)=(X,Y)AT, 由变量变换法, 有
f U , V ( u , v ) = f X , Y ( ( u , v ) A ) ∣ A ∣ = f X , Y ( ( u , v ) A ) , f_{U,V}\left( u,v \right) =f_{X,Y}\left( \left( u,v \right) A \right) \left| A \right|=f_{X,Y}\left( \left( u,v \right) A \right) , fU,V(u,v)=fX,Y((u,v)A)∣A∣=fX,Y((u,v)A),另一方面, 由于 U , V U,V U,V与 X , Y X,Y X,Y同分布, 故 f U , V ( u , v ) = f X , Y ( u , v ) f_{U,V}\left( u,v \right) =f_{X,Y}\left( u,v \right) fU,V(u,v)=fX,Y(u,v), 综上所述, 有
f X , Y ( x , y ) = f X , Y ( ( x , y ) A ) , f_{X,Y}\left( x,y \right) =f_{X,Y}\left( \left( x,y \right) A \right) , fX,Y(x,y)=fX,Y((x,y)A),对任意旋转变换 A A A成立, 这说明存在函数 u u u使得 f X , Y ( x , y ) = u ( x 2 + y 2 ) f_{X,Y}(x,y)=u(\sqrt{x^2+y^2}) fX,Y(x,y)=u(x2+y2). 作极坐标变换 { X = R cos Θ , Y = R sin Θ , \begin{cases} X=R\cos \Theta ,\\ Y=R\sin \Theta ,\\ \end{cases} { X=RcosΘ,Y=RsinΘ, 由变量变换法, 有 ( R , Θ ) (R,\Theta) (R,Θ)的分布是
f R , Θ ( r , θ ) = f X , Y ( r cos θ , r sin θ ) r = r u ( r ) , r ∈ ( 0 , + ∞ ) , θ ∈ ( 0 , 2 π ) , f_{R,\Theta}\left( r,\theta \right) =f_{X,Y}\left( r\cos \theta ,r\sin \theta \right) r=ru\left( r \right) ,\quad r\in \left( 0,+\infty \right) ,\theta \in \left( 0,2\pi \right) , fR,Θ(r,θ)=fX,Y(rcosθ,rsinθ)r=ru(r),r∈(0,+∞),θ∈(0,2π), 可因式分解, 因此 R , Θ R,\Theta R,Θ独立, 且 f Θ ( θ ) f_{\Theta}(\theta) fΘ(θ)是常数, 故 Θ ∼ U ( 0 , 2 π ) \Theta \sim U(0,2\pi) Θ∼U(0,2π). 因此 P ( 0 < Y < X ) = P ( Θ ∈ ( 0 , π 4 ) ) = 1 8 . P\left( 0<Y<X \right) =P\left( \Theta \in \left( 0,\frac{\pi}{4} \right) \right) =\frac{1}{8}. P(0<Y<X)=P(Θ∈(0,4π))=81. (2) T = Y X = tan Θ ∼ c h ( 0 , 1 ) T=\frac{Y}{X}=\tan \Theta \sim \mathrm{ch}\left( 0,1 \right) T=XY=tanΘ∼ch(0,1), 标准柯西分布, 可利用分布函数法说明: 这里要注意 Θ \Theta Θ取值是 ( 0 , 2 π ) (0,2\pi) (0,2π), 对不上反函数 arctan \arctan arctan的定义域, 要仔细讨论. 对任意 t > 0 t>0 t>0, 有
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ [ 0 , a r c tan t ] ∪ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , 2 π ] } , \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left[ 0,\mathrm{arc}\tan t \right] \cup \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},2\pi \right] \right\}\\ \end{aligned}, { T≤t}={ tanΘ≤t}={ Θ∈[0,arctant]∪(2π,arctant+π]∪(23π,2π]}, 故 P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t > 0 t>0 t>0. 再讨论对任意 t < 0 t<0 t<0, 有
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , a r c tan t + 2 π ) } \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},\mathrm{arc}\tan t+2\pi \right) \right\}\\ \end{aligned} { T≤t}={ tanΘ≤t}={ Θ∈(2π,arctant+π]∪(23π,arctant+2π)} 故 P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t < 0 t<0 t<0. 综上所述有
F T ( t ) = 1 2 + a r c tan t π , t ∈ R , F_T\left( t \right) =\frac{1}{2}+\frac{\mathrm{arc}\tan t}{\pi},\quad t\in R, FT(t)=21+πarctant,t∈R,求导得
f T ( t ) = 1 π ( 1 + t 2 ) , t ∈ R , f_T\left( t \right) =\frac{1}{\pi \left( 1+t^2 \right)},\quad t\in R, fT(t)=π(1+t2)1,t∈R, 这是标准柯西分布.
五、(20分) 已知 ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), 求 P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
Solution:
令 W = 2 3 ( Y − 1 2 X ) W=\frac{2}{\sqrt{3}}(Y-\frac{1}{2}X) W=32(Y−21X), 则有 E W = 0 EW=0 EW=0, V a r ( W ) = 1 Var(W)=1 Var(W)=1, 且 C o v ( X , W ) = 0 Cov(X,W)=0 Cov(X,W)=0, 故有 X , W X,W X,W独立同服从标准正态分布. 进一步考虑到
P ( X > 0 , Y > 0 ) = P ( − X > 0 , − Y > 0 ) = P ( X < 0 , Y < 0 ) , P\left( X>0,Y>0 \right) =P\left( -X>0,-Y>0 \right) =P\left( X<0,Y<0 \right) , P(X>0,Y>0)=P(−X>0,−Y>0)=P(X<0,Y<0), 发现
P ( X > 0 , Y > 0 ) = 1 2 P ( X Y > 0 ) = 1 2 P ( Y X > 0 ) , P\left( X>0,Y>0 \right) =\frac{1}{2}P\left( XY>0 \right) =\frac{1}{2}P\left( \frac{Y}{X}>0 \right) , P(X>0,Y>0)=21P(XY>0)=21P(XY>0), 再利用 W W W作处理, 即
{ Y X > 0 } = { 3 W 2 + 1 2 X X > 0 } = { W X > − 1 3 } . \left\{ \frac{Y}{X}>0 \right\} =\left\{ \frac{\frac{\sqrt{3}W}{2}+\frac{1}{2}X}{X}>0 \right\} =\left\{ \frac{W}{X}>-\frac{1}{\sqrt{3}}\right\} . { XY>0}={ X23W+21X>0}={ XW>−31}. 利用 W X \frac{W}{X} XW服从标准柯西分布, 有 P ( X > 0 , Y > 0 ) = 1 2 ∫ − 3 3 + ∞ 1 π ( 1 + t 2 ) d t = 1 3 . P\left( X>0,Y>0 \right) =\frac{1}{2}\int_{-\frac{\sqrt{3}}{3}}^{+\infty}{\frac{1}{\pi \left( 1+t^2 \right)}dt}=\frac{1}{3}. P(X>0,Y>0)=21∫−33+∞π(1+t2)1dt=31.
六、(10分) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯是i.i.d.的二阶矩存在随机变量, Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, 问: { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}是否服从大数定律.
Solution:
[法一]: 令 Z n = Y n n 2 Z_n = \frac{Y_n}{n^2} Zn=n2Yn, 直接计算协方差, 首先有
C o v ( Y k , Y k + l ) = C o v ( ∑ j = 1 k X j , ∑ j = 1 k + l X j ) = k V a r ( X 1 ) , Cov\left( Y_k,Y_{k+l} \right) =Cov\left( \sum_{j=1}^k{X_j},\sum_{j=1}^{k+l}{X_j} \right) =kVar\left( X_1 \right) , Cov(Yk,Yk+l)=Cov(j=1∑kXj,j=1∑k+lXj)=kVar(X1), 进一步有, 当 l → ∞ l\rightarrow \infty l→∞, 有
C o v ( Z k , Z k + l ) = 1 k 2 ( k + l ) 2 C o v ( Y k , Y l ) = V a r ( X 1 ) k ( k + l ) 2 → 0 , Cov\left( Z_k,Z_{k+l} \right) =\frac{1}{k^2\left( k+l \right) ^2}Cov\left( Y_k,Y_l \right) =\frac{Var\left( X_1 \right)}{k\left( k+l \right) ^2}\rightarrow 0, Cov(Zk,Zk+l)=k2(k+l)21Cov(Yk,Yl)=k(k+l)2Var(X1)→0,由伯恩斯坦条件, { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}服从大数定律.
[法二]: 由强大数律, 有 Z n = 1 n ⋅ Y n n → 0 ⋅ E X 1 = 0 Z_n=\frac{1}{n}\cdot \frac{Y_n}{n}\rightarrow 0\cdot EX_1=0 Zn=n1⋅nYn→0⋅EX1=0, a.s., 由stolz定理, 有 lim n → ∞ ∑ k = 1 n Z k n = lim n → ∞ Z n = 0 , a.s. \underset{n\rightarrow \infty}{\lim}\frac{\sum_{k=1}^n{Z_k}}{n}=\underset{n\rightarrow \infty}{\lim}Z_n=0, \text{a.s.} n→∞limn∑k=1nZk=n→∞limZn=0,a.s.
七、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的随机变量, F F F是其分布函数, 求 − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi)的分布.
Solution:
首先记 Y i = F ( X i ) ∼ U ( 0 , 1 ) Y_i = F(X_i)\sim U(0,1) Yi=F(Xi)∼U(0,1), 只需计算 Z 1 = − 2 Y 1 Z_1=-2Y_1 Z1=−2Y1的分布, 由分布函数法, 对 z > 0 z>0 z>0, 有
P ( Z 1 ≤ z ) = P ( − 2 ln Y 1 ≤ z ) = P ( Y 1 ≥ e − 2 z ) = 1 − e − 2 z , P\left( Z_1\le z \right) =P\left( -2\ln Y_1\le z \right) =P\left( Y_1\ge e^{-2z} \right) =1-e^{-2z}, P(Z1≤z)=P(−2lnY1≤z)=P(Y1≥e−2z)=1−e−2z, 这是均值为 1 / 2 1/2 1/2的指数分布, 也是 χ 2 ( 2 ) \chi^2(2) χ2(2)分布, 由可加性, 得
− 2 ∑ i = 1 n ln F ( X i ) ∼ χ 2 ( 2 n ) . -2\sum_{i=1}^n \ln F(X_i)\sim \chi^2(2n). −2i=1∑nlnF(Xi)∼χ2(2n).
八、(10分) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6是i.i.d.的 U ( 0 , 1 ) U(0,1) U(0,1)随机变量, 求 V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
Solution:
直接计算, 有
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 4 V a r ( X ( 2 ) ) + 9 V a r ( X ( 3 ) ) + 12 C o v ( X ( 2 ) , X ( 3 ) ) , Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =4Var\left( X_{\left( 2 \right)} \right) +9Var\left( X_{\left( 3 \right)} \right) +12Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) , Var(2X(2)+3X(3))=4Var(X(2))+9Var(X(3))+12Cov(X(2),X(3)), 而边际分布 X ( 2 ) ∼ B e t a ( 2 , 5 ) X_{(2)}\sim Beta(2,5) X(2)∼Beta(2,5), X ( 3 ) ∼ B e t a ( 3 , 4 ) X_{(3)}\sim Beta(3,4) X(3)∼Beta(3,4), 故两个方差项可以直接计算, 即
4 V a r ( X ( 2 ) ) = 4 ⋅ 10 7 2 ⋅ 8 = 10 98 , 9 V a r ( X ( 3 ) ) = 9 ⋅ 12 7 2 ⋅ 8 = 27 98 , 4Var\left( X_{\left( 2 \right)} \right) =\frac{4\cdot 10}{7^2\cdot 8}=\frac{10}{98},\quad 9Var\left( X_{\left( 3 \right)} \right) =\frac{9\cdot 12}{7^2\cdot 8}=\frac{27}{98}, 4Var(X(2))=72⋅84⋅10=9810,9Var(X(3))=72⋅89⋅12=9827, 协方差项可以记公式 i ( n + 1 − j ) ( n + 1 ) 2 ( n + 2 ) \frac{i(n+1-j)}{(n+1)^2(n+2)} (n+1)2(n+2)i(n+1−j)(2019复旦应统第七题), 也可以先写出联合密度
g 2 , 3 ( x , y ) = 6 ! 1 ! 1 ! 1 ! 3 ! x ⋅ ( 1 − y ) 3 = 6 ! 1 ! 3 ! x ( 1 − y ) 3 , 0 < x < y < 1 , g_{2,3}\left( x,y \right) =\frac{6!}{1!1!1!3!}x\cdot \left( 1-y \right) ^3=\frac{6!}{1!3!}x\left( 1-y \right) ^3,\quad 0<x<y<1, g2,3(x,y)=1!1!1!3!6!x⋅(1−y)3=1!3!6!x(1−y)3,0<x<y<1, 计算混合矩, 即
E ( X ( 2 ) X ( 3 ) ) = 6 ! 3 ! ∫ 0 1 ∫ 0 y x 2 y ( 1 − y ) 3 d x d y = 6 ! 3 ! 3 ∫ 0 1 y 4 ( 1 − y ) 3 d y = 6 ! 3 ! 4 ! 3 ! 8 ! 3 = 8 56 . \begin{aligned} E\left( X_{\left( 2 \right)}X_{\left( 3 \right)} \right) &=\frac{6!}{3!}\int_0^1{\int_0^y{x^2y\left( 1-y \right) ^3dx}dy}\\ &=\frac{6!}{3!3}\int_0^1{y^4\left( 1-y \right) ^3dy}\\ &=\frac{6!3!4!}{3!8!3}=\frac{8}{56}.\\ \end{aligned} E(X(2)X(3))=3!6!∫01∫0yx2y(1−y)3dxdy=3!36!∫01y4(1−y)3dy=3!8!36!3!4!=568. 因此协方差为 C o v ( X ( 2 ) , X ( 3 ) ) = 8 56 − 6 49 = 2 98 . Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) =\frac{8}{56}-\frac{6}{49}=\frac{2}{98}. Cov(X(2),X(3))=568−496=982. 将所有计算结果汇总得
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 61 98 . Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =\frac{61}{98}. Var(2X(2)+3X(3))=9861.
九、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 设 a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3)是 θ \theta θ的无偏估计, 求 a , b a,b a,b并比较它们的何者更有效.
Solution:
由于 X ( 1 ) θ ∼ B e t a ( 1 , 3 ) \frac{X_{(1)}}{\theta}\sim Beta(1,3) θX(1)∼Beta(1,3), 故 E X ( 1 ) = 1 4 θ EX_{(1)}=\frac{1}{4}\theta EX(1)=41θ, V a r ( X ( 1 ) ) = 3 80 θ 2 Var(X_{(1)})=\frac{3}{80}\theta^2 Var(X(1))=803θ2, 故 a = 4 a=4 a=4, 且 V a r ( a X ( 1 ) ) = 3 5 θ 2 Var(aX_{(1)})=\frac{3}{5}\theta^2 Var(aX(1))=53θ2. 同理 X ( 3 ) ∼ B e t a ( 3 , 1 ) X_{(3)}\sim Beta(3,1) X(3)∼Beta(3,1), 故 E X ( 3 ) = 3 4 θ EX_{(3)}=\frac{3}{4}\theta EX(3)=43θ, V a r ( X ( 3 ) ) = 3 80 θ 2 Var(X_{(3)})=\frac{3}{80}\theta^2 Var(X(3))=803θ2, 故 b = 4 3 b=\frac{4}{3} b=34, 且 V a r ( b X ( 3 ) ) = 1 60 θ 2 Var(bX_{(3)})=\frac{1}{60}\theta^2 Var(bX(3))=601θ2. 可以看出 b X ( 3 ) bX_{(3)} bX(3)更有效.
十、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 N ( μ , 16 ) N(\mu,16) N(μ,16)随机样本, μ \mu μ的先验分布是 N ( a , b 2 ) N(a,b^2) N(a,b2), 求后验分布.
Solution:
考虑充分统计量 X ˉ ∣ μ ∼ N ( μ , 16 n ) \bar{X}|\mu \sim N(\mu,\frac{16}{n}) Xˉ∣μ∼N(μ,n16), 有联合密度是
p ( x , μ ) = p ( x ∣ μ ) π ( π ) = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − ( 16 n + b 2 ) μ 2 − 2 ( b 2 x + 16 n a ) μ + ( b 2 x 2 + 16 n a 2 ) 2 ⋅ 16 n b 2 = C 1 ( x ) e − ( μ − b 2 x + 16 n a b 2 + 16 n ) 2 2 ⋅ 16 n b 2 16 n + b 2 , \begin{aligned} p\left( x,\mu \right) &=p\left( x|\mu \right) \pi \left( \pi \right) =C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{\left( \frac{16}{n}+b^2 \right) \mu ^2-2\left( b^2x+\frac{16}{n}a \right) \mu +\left( b^2x^2+\frac{16}{n}a^2 \right)}{2\cdot \frac{16}{n}b^2}}\\ &=C_1(x)e^{-\frac{\left( \mu -\frac{b^2x+\frac{16}{n}a}{b^2+\frac{16}{n}} \right) ^2}{2\cdot \frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2}}},\\ \end{aligned} p(x,μ)=p(x∣μ)π(π)=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2(n16+b2)μ2−2(b2x+n16a)μ+(b2x2+n16a2)=C1(x)e−2⋅n16+b2n16b2(μ−b2+n16b2x+n16a)2, 发现有一个正态分布的核, 故后验分布是
μ ∣ X ˉ ∼ N ( b 2 X ˉ + 16 n a b 2 + 16 n , 16 n b 2 16 n + b 2 ) = N ( n 16 X ˉ + 1 b 2 a n 16 + 1 b 2 , 1 n 16 + 1 b 2 ) . \mu |\bar{X}\sim N\left( \frac{b^2\bar{X}+\frac{16}{n}a}{b^2+\frac{16}{n}},\frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2} \right) =N\left( \frac{\frac{n}{16}\bar{X}+\frac{1}{b^2}a}{\frac{n}{16}+\frac{1}{b^2}},\frac{1}{\frac{n}{16}+\frac{1}{b^2}} \right) . μ∣Xˉ∼N(b2+n16b2Xˉ+n16a,n16+b2n16b2)=N(16n+b2116nXˉ+b21a,16n+b211). 可以看出后验均值是样本信息与先验信息的加权平均.
十一、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 考虑假设检验问题
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1构造拒绝域 W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. 回答下述问题:
(1)(5分) α = 0.05 \alpha = 0.05 α=0.05, 求 c c c;
(2)(5分) 当 θ = 1.5 \theta=1.5 θ=1.5, 为使得犯第二类错误的概率 β ≤ 0.1 \beta\le 0.1 β≤0.1, 求至少要多少样本量.
Solution:
(1) 为使显著性水平为 0.05 0.05 0.05, 有
0.05 = s u p θ ≤ 1 P θ ( X ( n ) ≥ c ) = P θ = 1 ( X ( n ) ≥ c ) = ( 1 − c ) n , 0.05 = \underset{\theta \le 1}{\mathrm{sup}}P_{\theta}\left( X_{\left( n \right)}\ge c \right) =P_{\theta =1}\left( X_{\left( n \right)}\ge c \right) =\left( 1-c \right) ^n, 0.05=θ≤1supPθ(X(n)≥c)=Pθ=1(X(n)≥c)=(1−c)n,
解得 c = 0.9 5 1 n c=0.95^{\frac{1}{n}} c=0.95n1.
(2) 犯第二类错误的概率是
β ( 1.5 ) = P θ = 1.5 ( X ( n ) < 0.9 5 1 n ) = ( 0.9 5 1 n 1.5 ) n = 0.95 1. 5 n , \beta \left( 1.5 \right) =P_{\theta =1.5}\left( X_{\left( n \right)}<0.95^{\frac{1}{n}} \right) =\left( \frac{0.95^{\frac{1}{n}}}{1.5} \right) ^n=\frac{0.95}{1.5^n}, β(1.5)=Pθ=1.5(X(n)<0.95n1)=(1.50.95n1)n=1.5n0.95,令其小于等于 0.1 0.1 0.1, 得
0.95 1. 5 n ≤ 0.1 * n ≥ ln 9.5 ln 1.5 * n ≥ 6. \frac{0.95}{1.5^n}\le 0.1 \Longrightarrow \,\,n\ge \frac{\ln 9.5}{\ln 1.5}\,\,\Longrightarrow \,\,n\ge 6. 1.5n0.95≤0.1*n≥ln1.5ln9.5*n≥6.
边栏推荐
- ROS machine voice
- Introduction and use of redis
- [中国近代史] 第六章测验
- TYUT太原理工大学2022“mao gai”必背
- arduino+DS18B20温度传感器(蜂鸣器报警)+LCD1602显示(IIC驱动)
- 凡人修仙学指针-2
- 5.函数递归练习
- Introduction pointer notes
- Solution: warning:tensorflow:gradients do not exist for variables ['deny_1/kernel:0', 'deny_1/bias:0',
- View UI Plus 發布 1.3.1 版本,增强 TypeScript 使用體驗
猜你喜欢
如何保障 MySQL 和 Redis 的数据一致性?
System design learning (III) design Amazon's sales rank by category feature
13 power map
Experience summary of autumn recruitment of state-owned enterprises
Quickly generate illustrations
西安电子科技大学22学年上学期《基础实验》试题及答案
阿里云微服务(二) 分布式服务配置中心以及Nacos的使用场景及实现介绍
One article to get UDP and TCP high-frequency interview questions!
Interview Essentials: talk about the various implementations of distributed locks!
1.初识C语言(1)
随机推荐
继承和多态(上)
十分钟彻底掌握缓存击穿、缓存穿透、缓存雪崩
Alibaba cloud side: underlying details in concurrent scenarios - pseudo sharing
The overseas sales of Xiaomi mobile phones are nearly 140million, which may explain why Xiaomi ov doesn't need Hongmeng
几道高频的JVM面试题
西安电子科技大学22学年上学期《射频电路基础》试题及答案
12 excel charts and arrays
Implement queue with stack
10 minutes pour maîtriser complètement la rupture du cache, la pénétration du cache, l'avalanche du cache
六种集合的遍历方式总结(List Set Map Queue Deque Stack)
面渣逆袭:Redis连环五十二问,三万字+八十图详解。
1.初识C语言(1)
How do architects draw system architecture blueprints?
JS interview questions (I)
Application architecture of large live broadcast platform
Abstract classes and interfaces
Redis cache obsolescence strategy
阿里云微服务(三)Sentinel开源流控熔断降级组件
Conceptual model design of the 2022 database of tyut Taiyuan University of Technology
TYUT太原理工大学2022“mao gai”必背