当前位置:网站首页>【九阳神功】2022复旦大学应用统计真题+解析
【九阳神功】2022复旦大学应用统计真题+解析
2022-07-06 09:20:00 【大师兄统计】
真题部分
一、(20分) 袋子里有: a a a红球, a a a黄球, b b b蓝球. 有放回摸3个球, 设 A = { A=\{ A={ 抽出的求有黄球也有红球, 且红球比黄球先取出 } \} }. 求:
(1)(10分) P ( A ) P(A) P(A);
(2)(10分) 若 { \{ { 没有摸到蓝球 } \} }与 A A A概率相同, 求 a : b a:b a:b.
二、(10分) 离散型随机变量 X X X的分布列是
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, 其中 a < b < a + 1 a<b<a+1 a<b<a+1. 求其方差的取值范围.
三、(20分) 离散型随机变量 X X X只取 x , x + a x,x+a x,x+a两个值, 其中 a > 0 a>0 a>0, 且 V a r ( X ) = 1 Var(X)=1 Var(X)=1, 求 a a a的取值范围及 X X X的分布列.
四、(20分) 设有随机向量 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), 已知它经过任意旋转变换后 ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY)仍与 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY)同分布, 试解决下述问题:
(1) 求 P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) 求 Y X \frac{Y}{X} XY的分布.
五、(20分) 已知 ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), 求 P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
六、(10分) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯是i.i.d.的二阶矩存在随机变量, Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, 问: { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}是否服从大数定律.
七、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的随机变量, F F F是其分布函数, 求 − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi)的分布.
八、(10分) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6是i.i.d.的 U ( 0 , 1 ) U(0,1) U(0,1)随机变量, 求 V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
九、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xni是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 设 a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3)是 θ \theta θ的无偏估计, 求 a , b a,b a,b并比较它们的何者更有效.
十、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 N ( μ , 16 ) N(\mu,16) N(μ,16)随机样本, μ \mu μ的先验分布是 N ( a , b 2 ) N(a,b^2) N(a,b2), 求后验分布.
十一、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 考虑假设检验问题
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1构造拒绝域 W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. 回答下述问题:
(1)(5分) α = 0.05 \alpha = 0.05 α=0.05, 求 c c c;
(2)(5分) 当 θ = 1.5 \theta=1.5 θ=1.5, 为使得犯第二类错误的概率 β ≤ 0.1 \beta\le 0.1 β≤0.1, 求至少要多少样本量.
解析部分
一、(20分) 袋子里有: a a a红球, a a a黄球, b b b蓝球. 有放回摸3个球, 设 A = { A=\{ A={ 抽出的求有黄球也有红球, 且红球比黄球先取出 } \} }. 求:
(1)(10分) P ( A ) P(A) P(A);
(2)(10分) 若 { \{ { 没有摸到蓝球 } \} }与 A A A概率相同, 求 a : b a:b a:b.
Solution:
[注]: 题干可以理解成 A 1 = { A_1=\{ A1={ 有一个红球比黄球先取出 } \} }, 也可以理解成 A 2 = { A_2=\{ A2={ 所有红球比黄球先取出 } \} }.
(1) 先考虑 A 1 A_1 A1, 有
A 1 = { 红红黄 , 红黄红 , 红黄黄 , 蓝红黄 , 红蓝黄 , 红黄蓝 } , A_1=\left\{ \text{红红黄}, \text{红黄红}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} , A1={ 红红黄,红黄红,红黄黄,蓝红黄,红蓝黄,红黄蓝},故有
P ( A 1 ) = a 3 + a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = 3 a 2 ( a + b ) ( 2 a + b ) 3 . P\left( A_1 \right) =\frac{a^3+a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{3a^2\left( a+b \right)}{\left( 2a+b \right) ^3}. P(A1)=(2a+b)3a3+a3+a3+3a2b=(2a+b)33a2(a+b). 再考虑 A 2 A_2 A2, 有
A 2 = { 红红黄 , 红黄黄 , 蓝红黄 , 红蓝黄 , 红黄蓝 } , A_2=\left\{ \text{红红黄}, \text{红黄黄}, \text{蓝红黄}, \text{红蓝黄}, \text{红黄蓝} \right\} , A2={ 红红黄,红黄黄,蓝红黄,红蓝黄,红黄蓝}, 故有
P ( A 2 ) = a 3 + a 3 + 3 a 2 b ( 2 a + b ) 3 = a 2 ( 2 a + 3 b ) ( 2 a + b ) 3 . P\left( A_2 \right) =\frac{a^3+a^3+3a^2b}{\left( 2a+b \right) ^3}=\frac{a^2\left( 2a+3b \right)}{\left( 2a+b \right) ^3}. P(A2)=(2a+b)3a3+a3+3a2b=(2a+b)3a2(2a+3b). (2) 先计算 B = { B=\{ B={ 没有摸到蓝球 } \} }, 有
P ( B ) = ( 2 a 2 a + b ) 3 = 8 a 3 ( 2 a + b ) 3 , P\left( B \right) =\left( \frac{2a}{2a+b} \right) ^3=\frac{8a^3}{\left( 2a+b \right) ^3}, P(B)=(2a+b2a)3=(2a+b)38a3, 若 P ( B ) = P ( A 1 ) P(B)=P(A_1) P(B)=P(A1), 即
8 a 3 = 3 a 2 ( a + b ) * 8 a = 3 ( a + b ) * a b = 3 5 . 8a^3=3a^2\left( a+b \right) \,\,\Longrightarrow \,\,8a=3\left( a+b \right) \,\,\Longrightarrow \frac{a}{b}=\frac{3}{5}. 8a3=3a2(a+b)*8a=3(a+b)*ba=53. 若 P ( B ) = P ( A 2 ) P(B)=P(A_2) P(B)=P(A2), 即
8 a 3 = a 2 ( 2 a + 3 b ) * 8 a = 2 a + 3 b * a b = 1 2 . 8a^3=a^2\left( 2a+3b \right) \,\,\Longrightarrow \,\,8a=2a+3b\,\,\Longrightarrow \frac{a}{b}=\frac{1}{2}. 8a3=a2(2a+3b)*8a=2a+3b*ba=21.
二、(10分) 离散型随机变量 X X X的分布列是
P ( X = a ) = P ( X = b ) = P ( X = a + 1 ) = 1 3 , P(X=a)=P(X=b)=P(X=a+1)=\frac{1}{3}, P(X=a)=P(X=b)=P(X=a+1)=31, 其中 a < b < a + 1 a<b<a+1 a<b<a+1. 求其方差的取值范围.
Solution:
由于 V a r ( X ) = V a r ( X − a ) Var(X)=Var(X-a) Var(X)=Var(X−a), 故不妨假设 X X X的取值是
P ( X = 0 ) = P ( X = c ) = P ( X = 1 ) = 1 3 , P(X=0)=P(X=c)=P(X=1)=\frac{1}{3}, P(X=0)=P(X=c)=P(X=1)=31, 其中 c = b − a ∈ ( 0 , 1 ) c=b-a\in (0,1) c=b−a∈(0,1), 故有 E X = c + 1 3 EX=\frac{c+1}{3} EX=3c+1, 而
E X 2 = c 2 + 1 3 , V a r ( X ) = 3 c 2 + 3 − ( c + 1 ) 2 9 = 2 9 [ ( c − 1 2 ) 2 + 3 4 ] ∈ [ 1 6 , 2 9 ) . EX^2 = \frac{c^2+1}{3},\quad Var(X)=\frac{3c^2+3-(c+1)^2}{9}=\frac{2}{9}\left[ \left( c-\frac{1}{2} \right) ^2+\frac{3}{4} \right] \in \left[ \frac{1}{6},\frac{2}{9} \right) . EX2=3c2+1,Var(X)=93c2+3−(c+1)2=92[(c−21)2+43]∈[61,92).
三、(20分) 离散型随机变量 X X X只取 x , x + a x,x+a x,x+a两个值, 其中 a > 0 a>0 a>0, 且 V a r ( X ) = 1 Var(X)=1 Var(X)=1, 求 a a a的取值范围及 X X X的分布列.
Solution:
题目只给了方差的条件, 而 V a r ( X ) = V a r ( X − x ) Var(X)=Var(X-x) Var(X)=Var(X−x), 故不妨先假设 X X X只取 0 , a 0,a 0,a两个值, 且
V a r ( X ) = a 2 p − a 2 p 2 = a 2 p ( 1 − p ) = 1 , Var\left( X \right) =a^2p-a^2p^2=a^2p\left( 1-p \right) =1, Var(X)=a2p−a2p2=a2p(1−p)=1, 其中 p = P ( X = a ) p=P(X=a) p=P(X=a), 由于 p ( 1 − p ) ≤ 1 4 p(1-p)\le \frac{1}{4} p(1−p)≤41, 因此 a ≥ 2 a\ge 2 a≥2. 且当 a a a给定时, p p p是可以解出的, 即
p 2 − p + 1 a = 0 * p = 1 ± 1 − 4 a 2 . p^2-p+\frac{1}{a}=0 \Longrightarrow p=\frac{1\pm \sqrt{1-\frac{4}{a}}}{2}. p2−p+a1=0*p=21±1−a4. 所以 X X X的分布列是
P ( X = x ) = 1 + 1 − 4 a 2 , P ( X = x + a ) = 1 − 1 − 4 a 2 , P\left( X=x \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2}, P(X=x)=21+1−a4,P(X=x+a)=21−1−a4, 或者是
P ( X = x ) = 1 − 1 − 4 a 2 , P ( X = x + a ) = 1 + 1 − 4 a 2 . P\left( X=x \right) =\frac{1-\sqrt{1-\frac{4}{a}}}{2},\quad P\left( X=x+a \right) =\frac{1+\sqrt{1-\frac{4}{a}}}{2}. P(X=x)=21−1−a4,P(X=x+a)=21+1−a4.
四、(20分) 设有随机向量 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY), 已知它经过任意旋转变换后 ( cos α sin α − sin α cos α ) ( X Y ) \left( \begin{matrix} \cos \alpha& \sin \alpha\\ -\sin \alpha& \cos \alpha\\ \end{matrix} \right) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (cosα−sinαsinαcosα)(XY)仍与 ( X Y ) \left( \begin{array}{c} X\\ Y\\ \end{array} \right) (XY)同分布, 试解决下述问题:
(1) 求 P ( 0 < Y < X ) P(0<Y<X) P(0<Y<X);
(2) 求 Y X \frac{Y}{X} XY的分布.
Solution:
(1) 设 X , Y X,Y X,Y的密度函数是 f X , Y ( x , y ) f_{X,Y}(x,y) fX,Y(x,y), 对旋转变换 ( U , V ) = ( X , Y ) A T (U,V)=(X,Y)A^T (U,V)=(X,Y)AT, 由变量变换法, 有
f U , V ( u , v ) = f X , Y ( ( u , v ) A ) ∣ A ∣ = f X , Y ( ( u , v ) A ) , f_{U,V}\left( u,v \right) =f_{X,Y}\left( \left( u,v \right) A \right) \left| A \right|=f_{X,Y}\left( \left( u,v \right) A \right) , fU,V(u,v)=fX,Y((u,v)A)∣A∣=fX,Y((u,v)A),另一方面, 由于 U , V U,V U,V与 X , Y X,Y X,Y同分布, 故 f U , V ( u , v ) = f X , Y ( u , v ) f_{U,V}\left( u,v \right) =f_{X,Y}\left( u,v \right) fU,V(u,v)=fX,Y(u,v), 综上所述, 有
f X , Y ( x , y ) = f X , Y ( ( x , y ) A ) , f_{X,Y}\left( x,y \right) =f_{X,Y}\left( \left( x,y \right) A \right) , fX,Y(x,y)=fX,Y((x,y)A),对任意旋转变换 A A A成立, 这说明存在函数 u u u使得 f X , Y ( x , y ) = u ( x 2 + y 2 ) f_{X,Y}(x,y)=u(\sqrt{x^2+y^2}) fX,Y(x,y)=u(x2+y2). 作极坐标变换 { X = R cos Θ , Y = R sin Θ , \begin{cases} X=R\cos \Theta ,\\ Y=R\sin \Theta ,\\ \end{cases} { X=RcosΘ,Y=RsinΘ, 由变量变换法, 有 ( R , Θ ) (R,\Theta) (R,Θ)的分布是
f R , Θ ( r , θ ) = f X , Y ( r cos θ , r sin θ ) r = r u ( r ) , r ∈ ( 0 , + ∞ ) , θ ∈ ( 0 , 2 π ) , f_{R,\Theta}\left( r,\theta \right) =f_{X,Y}\left( r\cos \theta ,r\sin \theta \right) r=ru\left( r \right) ,\quad r\in \left( 0,+\infty \right) ,\theta \in \left( 0,2\pi \right) , fR,Θ(r,θ)=fX,Y(rcosθ,rsinθ)r=ru(r),r∈(0,+∞),θ∈(0,2π), 可因式分解, 因此 R , Θ R,\Theta R,Θ独立, 且 f Θ ( θ ) f_{\Theta}(\theta) fΘ(θ)是常数, 故 Θ ∼ U ( 0 , 2 π ) \Theta \sim U(0,2\pi) Θ∼U(0,2π). 因此 P ( 0 < Y < X ) = P ( Θ ∈ ( 0 , π 4 ) ) = 1 8 . P\left( 0<Y<X \right) =P\left( \Theta \in \left( 0,\frac{\pi}{4} \right) \right) =\frac{1}{8}. P(0<Y<X)=P(Θ∈(0,4π))=81. (2) T = Y X = tan Θ ∼ c h ( 0 , 1 ) T=\frac{Y}{X}=\tan \Theta \sim \mathrm{ch}\left( 0,1 \right) T=XY=tanΘ∼ch(0,1), 标准柯西分布, 可利用分布函数法说明: 这里要注意 Θ \Theta Θ取值是 ( 0 , 2 π ) (0,2\pi) (0,2π), 对不上反函数 arctan \arctan arctan的定义域, 要仔细讨论. 对任意 t > 0 t>0 t>0, 有
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ [ 0 , a r c tan t ] ∪ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , 2 π ] } , \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left[ 0,\mathrm{arc}\tan t \right] \cup \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},2\pi \right] \right\}\\ \end{aligned}, { T≤t}={ tanΘ≤t}={ Θ∈[0,arctant]∪(2π,arctant+π]∪(23π,2π]}, 故 P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t > 0 t>0 t>0. 再讨论对任意 t < 0 t<0 t<0, 有
{ T ≤ t } = { tan Θ ≤ t } = { Θ ∈ ( π 2 , a r c tan t + π ] ∪ ( 3 π 2 , a r c tan t + 2 π ) } \begin{aligned} \left\{ T\le t \right\} &=\left\{ \tan \Theta \le t \right\}\\ &=\left\{ \Theta \in \left( \frac{\pi}{2},\mathrm{arc}\tan t+\pi \right] \cup \left( \frac{3\pi}{2},\mathrm{arc}\tan t+2\pi \right) \right\}\\ \end{aligned} { T≤t}={ tanΘ≤t}={ Θ∈(2π,arctant+π]∪(23π,arctant+2π)} 故 P ( T ≤ t ) = π + 2 arctan t 2 π = 1 2 + arctan t π P(T\le t)= \frac{\pi + 2\arctan t}{2\pi}=\frac{1}{2} + \frac{\arctan t}{\pi} P(T≤t)=2ππ+2arctant=21+πarctant, t < 0 t<0 t<0. 综上所述有
F T ( t ) = 1 2 + a r c tan t π , t ∈ R , F_T\left( t \right) =\frac{1}{2}+\frac{\mathrm{arc}\tan t}{\pi},\quad t\in R, FT(t)=21+πarctant,t∈R,求导得
f T ( t ) = 1 π ( 1 + t 2 ) , t ∈ R , f_T\left( t \right) =\frac{1}{\pi \left( 1+t^2 \right)},\quad t\in R, fT(t)=π(1+t2)1,t∈R, 这是标准柯西分布.
五、(20分) 已知 ( X , Y ) ∼ N ( 0 , 0 ; 1 , 1 ; 1 2 ) (X,Y)\sim N(0,0;1,1;\frac{1}{2}) (X,Y)∼N(0,0;1,1;21), 求 P ( X > 0 , Y > 0 ) P(X>0,Y>0) P(X>0,Y>0).
Solution:
令 W = 2 3 ( Y − 1 2 X ) W=\frac{2}{\sqrt{3}}(Y-\frac{1}{2}X) W=32(Y−21X), 则有 E W = 0 EW=0 EW=0, V a r ( W ) = 1 Var(W)=1 Var(W)=1, 且 C o v ( X , W ) = 0 Cov(X,W)=0 Cov(X,W)=0, 故有 X , W X,W X,W独立同服从标准正态分布. 进一步考虑到
P ( X > 0 , Y > 0 ) = P ( − X > 0 , − Y > 0 ) = P ( X < 0 , Y < 0 ) , P\left( X>0,Y>0 \right) =P\left( -X>0,-Y>0 \right) =P\left( X<0,Y<0 \right) , P(X>0,Y>0)=P(−X>0,−Y>0)=P(X<0,Y<0), 发现
P ( X > 0 , Y > 0 ) = 1 2 P ( X Y > 0 ) = 1 2 P ( Y X > 0 ) , P\left( X>0,Y>0 \right) =\frac{1}{2}P\left( XY>0 \right) =\frac{1}{2}P\left( \frac{Y}{X}>0 \right) , P(X>0,Y>0)=21P(XY>0)=21P(XY>0), 再利用 W W W作处理, 即
{ Y X > 0 } = { 3 W 2 + 1 2 X X > 0 } = { W X > − 1 3 } . \left\{ \frac{Y}{X}>0 \right\} =\left\{ \frac{\frac{\sqrt{3}W}{2}+\frac{1}{2}X}{X}>0 \right\} =\left\{ \frac{W}{X}>-\frac{1}{\sqrt{3}}\right\} . { XY>0}={ X23W+21X>0}={ XW>−31}. 利用 W X \frac{W}{X} XW服从标准柯西分布, 有 P ( X > 0 , Y > 0 ) = 1 2 ∫ − 3 3 + ∞ 1 π ( 1 + t 2 ) d t = 1 3 . P\left( X>0,Y>0 \right) =\frac{1}{2}\int_{-\frac{\sqrt{3}}{3}}^{+\infty}{\frac{1}{\pi \left( 1+t^2 \right)}dt}=\frac{1}{3}. P(X>0,Y>0)=21∫−33+∞π(1+t2)1dt=31.
六、(10分) X 1 , ⋯ , X n , ⋯ X_1,\cdots,X_n,\cdots X1,⋯,Xn,⋯是i.i.d.的二阶矩存在随机变量, Y n = ∑ i = 1 n X i Y_n = \sum_{i=1}^n X_i Yn=∑i=1nXi, 问: { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}是否服从大数定律.
Solution:
[法一]: 令 Z n = Y n n 2 Z_n = \frac{Y_n}{n^2} Zn=n2Yn, 直接计算协方差, 首先有
C o v ( Y k , Y k + l ) = C o v ( ∑ j = 1 k X j , ∑ j = 1 k + l X j ) = k V a r ( X 1 ) , Cov\left( Y_k,Y_{k+l} \right) =Cov\left( \sum_{j=1}^k{X_j},\sum_{j=1}^{k+l}{X_j} \right) =kVar\left( X_1 \right) , Cov(Yk,Yk+l)=Cov(j=1∑kXj,j=1∑k+lXj)=kVar(X1), 进一步有, 当 l → ∞ l\rightarrow \infty l→∞, 有
C o v ( Z k , Z k + l ) = 1 k 2 ( k + l ) 2 C o v ( Y k , Y l ) = V a r ( X 1 ) k ( k + l ) 2 → 0 , Cov\left( Z_k,Z_{k+l} \right) =\frac{1}{k^2\left( k+l \right) ^2}Cov\left( Y_k,Y_l \right) =\frac{Var\left( X_1 \right)}{k\left( k+l \right) ^2}\rightarrow 0, Cov(Zk,Zk+l)=k2(k+l)21Cov(Yk,Yl)=k(k+l)2Var(X1)→0,由伯恩斯坦条件, { Y n n 2 } \{\frac{Y_n}{n^2}\} { n2Yn}服从大数定律.
[法二]: 由强大数律, 有 Z n = 1 n ⋅ Y n n → 0 ⋅ E X 1 = 0 Z_n=\frac{1}{n}\cdot \frac{Y_n}{n}\rightarrow 0\cdot EX_1=0 Zn=n1⋅nYn→0⋅EX1=0, a.s., 由stolz定理, 有 lim n → ∞ ∑ k = 1 n Z k n = lim n → ∞ Z n = 0 , a.s. \underset{n\rightarrow \infty}{\lim}\frac{\sum_{k=1}^n{Z_k}}{n}=\underset{n\rightarrow \infty}{\lim}Z_n=0, \text{a.s.} n→∞limn∑k=1nZk=n→∞limZn=0,a.s.
七、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的随机变量, F F F是其分布函数, 求 − 2 ∑ i = 1 n ln F ( X i ) -2\sum_{i=1}^n \ln F(X_i) −2∑i=1nlnF(Xi)的分布.
Solution:
首先记 Y i = F ( X i ) ∼ U ( 0 , 1 ) Y_i = F(X_i)\sim U(0,1) Yi=F(Xi)∼U(0,1), 只需计算 Z 1 = − 2 Y 1 Z_1=-2Y_1 Z1=−2Y1的分布, 由分布函数法, 对 z > 0 z>0 z>0, 有
P ( Z 1 ≤ z ) = P ( − 2 ln Y 1 ≤ z ) = P ( Y 1 ≥ e − 2 z ) = 1 − e − 2 z , P\left( Z_1\le z \right) =P\left( -2\ln Y_1\le z \right) =P\left( Y_1\ge e^{-2z} \right) =1-e^{-2z}, P(Z1≤z)=P(−2lnY1≤z)=P(Y1≥e−2z)=1−e−2z, 这是均值为 1 / 2 1/2 1/2的指数分布, 也是 χ 2 ( 2 ) \chi^2(2) χ2(2)分布, 由可加性, 得
− 2 ∑ i = 1 n ln F ( X i ) ∼ χ 2 ( 2 n ) . -2\sum_{i=1}^n \ln F(X_i)\sim \chi^2(2n). −2i=1∑nlnF(Xi)∼χ2(2n).
八、(10分) X 1 , ⋯ , X 6 X_1,\cdots,X_6 X1,⋯,X6是i.i.d.的 U ( 0 , 1 ) U(0,1) U(0,1)随机变量, 求 V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) Var(2X_{(2)}+3X_{(3)}) Var(2X(2)+3X(3)).
Solution:
直接计算, 有
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 4 V a r ( X ( 2 ) ) + 9 V a r ( X ( 3 ) ) + 12 C o v ( X ( 2 ) , X ( 3 ) ) , Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =4Var\left( X_{\left( 2 \right)} \right) +9Var\left( X_{\left( 3 \right)} \right) +12Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) , Var(2X(2)+3X(3))=4Var(X(2))+9Var(X(3))+12Cov(X(2),X(3)), 而边际分布 X ( 2 ) ∼ B e t a ( 2 , 5 ) X_{(2)}\sim Beta(2,5) X(2)∼Beta(2,5), X ( 3 ) ∼ B e t a ( 3 , 4 ) X_{(3)}\sim Beta(3,4) X(3)∼Beta(3,4), 故两个方差项可以直接计算, 即
4 V a r ( X ( 2 ) ) = 4 ⋅ 10 7 2 ⋅ 8 = 10 98 , 9 V a r ( X ( 3 ) ) = 9 ⋅ 12 7 2 ⋅ 8 = 27 98 , 4Var\left( X_{\left( 2 \right)} \right) =\frac{4\cdot 10}{7^2\cdot 8}=\frac{10}{98},\quad 9Var\left( X_{\left( 3 \right)} \right) =\frac{9\cdot 12}{7^2\cdot 8}=\frac{27}{98}, 4Var(X(2))=72⋅84⋅10=9810,9Var(X(3))=72⋅89⋅12=9827, 协方差项可以记公式 i ( n + 1 − j ) ( n + 1 ) 2 ( n + 2 ) \frac{i(n+1-j)}{(n+1)^2(n+2)} (n+1)2(n+2)i(n+1−j)(2019复旦应统第七题), 也可以先写出联合密度
g 2 , 3 ( x , y ) = 6 ! 1 ! 1 ! 1 ! 3 ! x ⋅ ( 1 − y ) 3 = 6 ! 1 ! 3 ! x ( 1 − y ) 3 , 0 < x < y < 1 , g_{2,3}\left( x,y \right) =\frac{6!}{1!1!1!3!}x\cdot \left( 1-y \right) ^3=\frac{6!}{1!3!}x\left( 1-y \right) ^3,\quad 0<x<y<1, g2,3(x,y)=1!1!1!3!6!x⋅(1−y)3=1!3!6!x(1−y)3,0<x<y<1, 计算混合矩, 即
E ( X ( 2 ) X ( 3 ) ) = 6 ! 3 ! ∫ 0 1 ∫ 0 y x 2 y ( 1 − y ) 3 d x d y = 6 ! 3 ! 3 ∫ 0 1 y 4 ( 1 − y ) 3 d y = 6 ! 3 ! 4 ! 3 ! 8 ! 3 = 8 56 . \begin{aligned} E\left( X_{\left( 2 \right)}X_{\left( 3 \right)} \right) &=\frac{6!}{3!}\int_0^1{\int_0^y{x^2y\left( 1-y \right) ^3dx}dy}\\ &=\frac{6!}{3!3}\int_0^1{y^4\left( 1-y \right) ^3dy}\\ &=\frac{6!3!4!}{3!8!3}=\frac{8}{56}.\\ \end{aligned} E(X(2)X(3))=3!6!∫01∫0yx2y(1−y)3dxdy=3!36!∫01y4(1−y)3dy=3!8!36!3!4!=568. 因此协方差为 C o v ( X ( 2 ) , X ( 3 ) ) = 8 56 − 6 49 = 2 98 . Cov\left( X_{\left( 2 \right)},X_{\left( 3 \right)} \right) =\frac{8}{56}-\frac{6}{49}=\frac{2}{98}. Cov(X(2),X(3))=568−496=982. 将所有计算结果汇总得
V a r ( 2 X ( 2 ) + 3 X ( 3 ) ) = 61 98 . Var\left( 2X_{\left( 2 \right)}+3X_{\left( 3 \right)} \right) =\frac{61}{98}. Var(2X(2)+3X(3))=9861.
九、(10分) X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 设 a X ( 1 ) , b X ( 3 ) aX_{(1)},bX_{(3)} aX(1),bX(3)是 θ \theta θ的无偏估计, 求 a , b a,b a,b并比较它们的何者更有效.
Solution:
由于 X ( 1 ) θ ∼ B e t a ( 1 , 3 ) \frac{X_{(1)}}{\theta}\sim Beta(1,3) θX(1)∼Beta(1,3), 故 E X ( 1 ) = 1 4 θ EX_{(1)}=\frac{1}{4}\theta EX(1)=41θ, V a r ( X ( 1 ) ) = 3 80 θ 2 Var(X_{(1)})=\frac{3}{80}\theta^2 Var(X(1))=803θ2, 故 a = 4 a=4 a=4, 且 V a r ( a X ( 1 ) ) = 3 5 θ 2 Var(aX_{(1)})=\frac{3}{5}\theta^2 Var(aX(1))=53θ2. 同理 X ( 3 ) ∼ B e t a ( 3 , 1 ) X_{(3)}\sim Beta(3,1) X(3)∼Beta(3,1), 故 E X ( 3 ) = 3 4 θ EX_{(3)}=\frac{3}{4}\theta EX(3)=43θ, V a r ( X ( 3 ) ) = 3 80 θ 2 Var(X_{(3)})=\frac{3}{80}\theta^2 Var(X(3))=803θ2, 故 b = 4 3 b=\frac{4}{3} b=34, 且 V a r ( b X ( 3 ) ) = 1 60 θ 2 Var(bX_{(3)})=\frac{1}{60}\theta^2 Var(bX(3))=601θ2. 可以看出 b X ( 3 ) bX_{(3)} bX(3)更有效.
十、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 N ( μ , 16 ) N(\mu,16) N(μ,16)随机样本, μ \mu μ的先验分布是 N ( a , b 2 ) N(a,b^2) N(a,b2), 求后验分布.
Solution:
考虑充分统计量 X ˉ ∣ μ ∼ N ( μ , 16 n ) \bar{X}|\mu \sim N(\mu,\frac{16}{n}) Xˉ∣μ∼N(μ,n16), 有联合密度是
p ( x , μ ) = p ( x ∣ μ ) π ( π ) = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C ⋅ e − ( x − μ ) 2 2 ⋅ 16 n ⋅ e − ( μ − a ) 2 2 b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − b 2 ( x − μ ) 2 + 16 n ( μ − a ) 2 2 ⋅ 16 n b 2 = C e − ( 16 n + b 2 ) μ 2 − 2 ( b 2 x + 16 n a ) μ + ( b 2 x 2 + 16 n a 2 ) 2 ⋅ 16 n b 2 = C 1 ( x ) e − ( μ − b 2 x + 16 n a b 2 + 16 n ) 2 2 ⋅ 16 n b 2 16 n + b 2 , \begin{aligned} p\left( x,\mu \right) &=p\left( x|\mu \right) \pi \left( \pi \right) =C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=C\cdot e^{-\frac{\left( x-\mu \right) ^2}{2\cdot \frac{16}{n}}}\cdot e^{-\frac{\left( \mu -a \right) ^2}{2b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{b^2\left( x-\mu \right) ^2+\frac{16}{n}\left( \mu -a \right) ^2}{2\cdot \frac{16}{n}b^2}}\\ &=Ce^{-\frac{\left( \frac{16}{n}+b^2 \right) \mu ^2-2\left( b^2x+\frac{16}{n}a \right) \mu +\left( b^2x^2+\frac{16}{n}a^2 \right)}{2\cdot \frac{16}{n}b^2}}\\ &=C_1(x)e^{-\frac{\left( \mu -\frac{b^2x+\frac{16}{n}a}{b^2+\frac{16}{n}} \right) ^2}{2\cdot \frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2}}},\\ \end{aligned} p(x,μ)=p(x∣μ)π(π)=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=C⋅e−2⋅n16(x−μ)2⋅e−2b2(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2b2(x−μ)2+n16(μ−a)2=Ce−2⋅n16b2(n16+b2)μ2−2(b2x+n16a)μ+(b2x2+n16a2)=C1(x)e−2⋅n16+b2n16b2(μ−b2+n16b2x+n16a)2, 发现有一个正态分布的核, 故后验分布是
μ ∣ X ˉ ∼ N ( b 2 X ˉ + 16 n a b 2 + 16 n , 16 n b 2 16 n + b 2 ) = N ( n 16 X ˉ + 1 b 2 a n 16 + 1 b 2 , 1 n 16 + 1 b 2 ) . \mu |\bar{X}\sim N\left( \frac{b^2\bar{X}+\frac{16}{n}a}{b^2+\frac{16}{n}},\frac{\frac{16}{n}b^2}{\frac{16}{n}+b^2} \right) =N\left( \frac{\frac{n}{16}\bar{X}+\frac{1}{b^2}a}{\frac{n}{16}+\frac{1}{b^2}},\frac{1}{\frac{n}{16}+\frac{1}{b^2}} \right) . μ∣Xˉ∼N(b2+n16b2Xˉ+n16a,n16+b2n16b2)=N(16n+b2116nXˉ+b21a,16n+b211). 可以看出后验均值是样本信息与先验信息的加权平均.
十一、(10分) 设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn是i.i.d.的 U ( 0 , θ ) U(0,\theta) U(0,θ)随机样本, 考虑假设检验问题
H 0 : θ ≤ 1 v s H 1 : θ > 1 H_0:\theta \le 1 \quad \mathrm{vs} \quad H_1: \theta >1 H0:θ≤1vsH1:θ>1构造拒绝域 W = { X ( n ) ≥ c } W=\{X_{(n)}\ge c \} W={ X(n)≥c}. 回答下述问题:
(1)(5分) α = 0.05 \alpha = 0.05 α=0.05, 求 c c c;
(2)(5分) 当 θ = 1.5 \theta=1.5 θ=1.5, 为使得犯第二类错误的概率 β ≤ 0.1 \beta\le 0.1 β≤0.1, 求至少要多少样本量.
Solution:
(1) 为使显著性水平为 0.05 0.05 0.05, 有
0.05 = s u p θ ≤ 1 P θ ( X ( n ) ≥ c ) = P θ = 1 ( X ( n ) ≥ c ) = ( 1 − c ) n , 0.05 = \underset{\theta \le 1}{\mathrm{sup}}P_{\theta}\left( X_{\left( n \right)}\ge c \right) =P_{\theta =1}\left( X_{\left( n \right)}\ge c \right) =\left( 1-c \right) ^n, 0.05=θ≤1supPθ(X(n)≥c)=Pθ=1(X(n)≥c)=(1−c)n,
解得 c = 0.9 5 1 n c=0.95^{\frac{1}{n}} c=0.95n1.
(2) 犯第二类错误的概率是
β ( 1.5 ) = P θ = 1.5 ( X ( n ) < 0.9 5 1 n ) = ( 0.9 5 1 n 1.5 ) n = 0.95 1. 5 n , \beta \left( 1.5 \right) =P_{\theta =1.5}\left( X_{\left( n \right)}<0.95^{\frac{1}{n}} \right) =\left( \frac{0.95^{\frac{1}{n}}}{1.5} \right) ^n=\frac{0.95}{1.5^n}, β(1.5)=Pθ=1.5(X(n)<0.95n1)=(1.50.95n1)n=1.5n0.95,令其小于等于 0.1 0.1 0.1, 得
0.95 1. 5 n ≤ 0.1 * n ≥ ln 9.5 ln 1.5 * n ≥ 6. \frac{0.95}{1.5^n}\le 0.1 \Longrightarrow \,\,n\ge \frac{\ln 9.5}{\ln 1.5}\,\,\Longrightarrow \,\,n\ge 6. 1.5n0.95≤0.1*n≥ln1.5ln9.5*n≥6.
边栏推荐
- TYUT太原理工大学2022数据库大题之概念模型设计
- 抽象类和接口
- Data manipulation language (DML)
- Conceptual model design of the 2022 database of tyut Taiyuan University of Technology
- List set map queue deque stack
- Redis cache obsolescence strategy
- 2.C语言初阶练习题(2)
- 10 minutes pour maîtriser complètement la rupture du cache, la pénétration du cache, l'avalanche du cache
- TYUT太原理工大学2022“mao gai”必背
- 5.MSDN的下载和使用
猜你喜欢

How do architects draw system architecture blueprints?

MySQL 30000 word essence summary + 100 interview questions, hanging the interviewer is more than enough (Collection Series

继承和多态(下)

View UI plus released version 1.3.0, adding space and $imagepreview components

2. Preliminary exercises of C language (2)

How to ensure data consistency between MySQL and redis?

Alibaba cloud microservices (IV) service mesh overview and instance istio

C语言实现扫雷游戏(完整版)

Differences and application scenarios between MySQL index clock B-tree, b+tree and hash indexes

12 excel charts and arrays
随机推荐
Solution: warning:tensorflow:gradients do not exist for variables ['deny_1/kernel:0', 'deny_1/bias:0',
Several high-frequency JVM interview questions
View UI plus released version 1.3.0, adding space and $imagepreview components
【快趁你舍友打游戏,来看道题吧】
Voir ui plus version 1.3.1 pour améliorer l'expérience Typescript
Arduino+ds18b20 temperature sensor (buzzer alarm) +lcd1602 display (IIC drive)
Data manipulation language (DML)
13 power map
[Topic terminator]
继承和多态(上)
There is always one of the eight computer operations that you can't learn programming
Alibaba cloud microservices (IV) service mesh overview and instance istio
MYSQL索引钟B-TREE ,B+TREE ,HASH索引之间的区别和应用场景
Conceptual model design of the 2022 database of tyut Taiyuan University of Technology
System design learning (I) design pastebin com (or Bit.ly)
12 excel charts and arrays
用栈实现队列
What are the advantages of using SQL in Excel VBA
Alibaba cloud microservices (III) sentinel open source flow control fuse degradation component
Redis cache obsolescence strategy