当前位置:网站首页>PyTorch RNN 实战案例_MNIST手写字体识别
PyTorch RNN 实战案例_MNIST手写字体识别
2022-07-06 09:11:00 【一曲无痕奈何】
# 模型1:Pytorch RNN 实现流程
# 加载数据集
# 使得数据集可迭代(每次读取一个Batch)
# 创建模型类
# 初始化模型类
# 初始化损失类
# 训练模型
# 1. 加载数据集
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 2、下载数据集
trainsets = datasets.MNIST(root = './data2',train = True,download = True,transform = transforms.ToTensor())
testsets = datasets.MNIST(root = './data2',train = False,transform=transforms.ToTensor())
class_names = trainsets.classes #查看类别标签
print(class_names)
# 3、查看数据集大小shape
print(trainsets.data.shape)
print(trainsets.targets.shape)
#4、定义超参数
BASH_SIZE = 32 #每批读取的数据大小
EPOCHS = 10 #训练十轮
# 创建数据集的可迭代对象,也就是说一个batch一个batch的读取数据
train_loader = torch.utils.data.DataLoader(dataset = trainsets, batch_size = BASH_SIZE,shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = testsets, batch_size = BASH_SIZE,shuffle = True)
# 查看一批batch的数据
images, labels = next(iter(test_loader))
print(images.shape)
#6、定义函数,显示一批数据
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406]) # 均值
std = np.array([0.229, 0.224, 0.225]) # 标准差
inp = std * inp + mean
inp = np.clip(inp, 0, 1) # 限速值限制在0-1之间
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
#网格显示
out = torchvision.utils.make_grid(images)
imshow(out)
# 7. 定义RNN模型
class RNN_Model(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
super(RNN_Model, self).__init__()
self.hidden_dim = hidden_dim
self.layer_dim = layer_dim
self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first = True, nonlinearity='relu')
#全连接层:
self.fc = nn.Linear(hidden_dim,output_dim)
def forward(self, x):
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
out, hn = self.rnn(x, h0.detach())
out = self.fc(out[:, -1, :])
return out
# 8. 初始化模型
input_dim = 28 #输入维度
hidden_dim = 100 #隐藏的维度
layer_dim = 2 # 2 层RNN
output_dim = 10 #输出维度
#实例化模型传入参数
model = RNN_Model(input_dim, hidden_dim, layer_dim,output_dim)
#判断是否有GPU
device = torch.device('cuda:()' if torch.cuda.is_available() else 'cpu')
#9、定义损失函数
criterion = nn.CrossEntropyLoss()
#10、定义优化函数
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
#11、输出模型参数
length = len(list(model.parameters()))
#12、循环打印模型参数
for i in range(length):
print('参数: %d' % (i+1))
print(list(model.parameters())[i].size())
# 13 、模型训练
sequence_dim = 28 #序列长度
loss_list = [] #保存loss
accuracy_list = [] #保存accuracy
iteration_list = [] #保存循环次数
iter = 0
for epoch in range(EPOCHS):
for i, (images, labels) in enumerate(train_loader):
model.train() #声明训练
#一个batch的数据转换为RNN的输入维度
images = images.view(-1, sequence_dim, input_dim).requires_grad_().to(device)
labels = labels.to(device)
#梯度清零(否则会不断增加)
optimizer.zero_grad()
#前向传播
outputs = model(images)
#计算损失
loss = criterion(outputs, labels)
#反向传播
loss.backward()
#更新参数
optimizer.step()
#计数自动加一
iter += 1
#模型验证
if iter % 500 == 0:
model.eval() #声明
#计算验证的accuracy
correct = 0.0
total = 0.0
#迭代测试集、获取数据、预测
for images, labels in test_loader:
images = images.view(-1, sequence_dim, input_dim).to(device)
#模型预测
outputs = model(images)
#获取预测概率的最大值的下标
predict = torch.max(outputs.data,1)[1]
#统计测试集的大小
total += labels.size(0)
# 统计判断/预测正确的数量
if torch.cuda.is_available():
correct += (predict.gpu() == labels.gpu()).sum()
else:
correct += (predict == labels).sum()
#计算
accuracy = (correct / total)/ 100 * 100
#保存accuracy, loss iteration
loss_list.append(loss.data)
accuracy_list.append(accuracy)
iteration_list.append(iter)
# 打印信息
print("epoch : {}, Loss : {}, Accuracy : {}".format(iter, loss.item(), accuracy))
# 可视化 loss
plt.plot(iteration_list, loss_list)
plt.xlabel('Number of Iteration')
plt.ylabel('Loss')
plt.title('RNN')
plt.show()
#可视化 accuracy
plt.plot(iteration_list, accuracy_list, color = 'r')
plt.xlabel('Number of Iteration')
plt.ylabel('Accuracy')
plt.title('RNN')
plt.savefig('RNN_mnist.png')
plt.show()


边栏推荐
猜你喜欢

Not registered via @enableconfigurationproperties, marked (@configurationproperties use)

docker MySQL解决时区问题

Sichuan cloud education and double teacher model

Typescript入门教程(B站黑马程序员)

在CANoe中通過Panel面板控制Test Module 運行(初級)

C杂讲 动态链表操作 再讲

MySQL的存储引擎

MySQL实战优化高手03 用一次数据更新流程,初步了解InnoDB存储引擎的架构设计
![[NLP] bert4vec: a sentence vector generation tool based on pre training](/img/fd/8e5e1577b4a6ccc06e29350a1113ed.jpg)
[NLP] bert4vec: a sentence vector generation tool based on pre training

Not registered via @EnableConfigurationProperties, marked(@ConfigurationProperties的使用)
随机推荐
Pointer learning
14 医疗挂号系统_【阿里云OSS、用户认证与就诊人】
text 文本数据增强方法 data argumentation
Contest3145 - the 37th game of 2021 freshman individual training match_ B: Password
四川云教和双师模式
Solve the problem of remote connection to MySQL under Linux in Windows
软件测试工程师必备之软技能:结构化思维
Super detailed steps to implement Wechat public number H5 Message push
C杂讲 动态链表操作 再讲
Contrôle de l'exécution du module d'essai par panneau dans Canoe (primaire)
Flash operation and maintenance script (running for a long time)
[after reading the series of must know] one of how to realize app automation without programming (preparation)
16 medical registration system_ [order by appointment]
MySQL combat optimization expert 03 uses a data update process to preliminarily understand the architecture design of InnoDB storage engine
MySQL learning diary (II)
CAPL script pair High level operation of INI configuration file
Inject common SQL statement collation
Sed text processing
Installation of pagoda and deployment of flask project
MySQL实战优化高手11 从数据的增删改开始讲起,回顾一下Buffer Pool在数据库里的地位