当前位置:网站首页>[set theory] set identities (idempotent law | exchange law | combination law | distribution rate | De Morgan law | absorption rate | zero law | identity | exclusion law | contradiction law | complemen
[set theory] set identities (idempotent law | exchange law | combination law | distribution rate | De Morgan law | absorption rate | zero law | identity | exclusion law | contradiction law | complemen
2022-07-03 04:12:00 【Programmer community】
One 、 Set identity
1. Idempotent law :
A
∪
A
=
A
A \cup A = A
A∪A=A ,
A
∩
A
=
A
A \cap A = A
A∩A=A
2. Commutative law :
A
∪
B
=
B
∪
A
A \cup B = B \cup A
A∪B=B∪A ,
A
∩
B
=
B
∩
A
A \cap B = B \cap A
A∩B=B∩A
3. Associative law :
(
A
∪
B
)
∪
C
=
A
∪
(
B
∪
C
)
(A \cup B) \cup C = A \cup ( B \cup C )
(A∪B)∪C=A∪(B∪C) ,
(
A
∩
B
)
∩
C
=
A
∩
(
B
∩
C
)
(A \cap B) \cap C = A \cap ( B \cap C )
(A∩B)∩C=A∩(B∩C)
4. Distribution rate :
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
A \cup ( B \cap C ) = ( A \cup B ) \cap ( A \cup C )
A∪(B∩C)=(A∪B)∩(A∪C) ,
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
A \cap ( B \cup C ) = ( A \cap B ) \cup ( A \cap C )
A∩(B∪C)=(A∩B)∪(A∩C)
5. De Morgan law :
① absolute form :
∼
(
A
∪
B
)
=
∼
A
∩
∼
B
\sim ( A \cup B ) = \sim A \cap \sim B
∼(A∪B)=∼A∩∼B ,
∼
(
A
∩
B
)
=
∼
A
∪
∼
B
\sim ( A \cap B ) = \sim A \cup \sim B
∼(A∩B)=∼A∪∼B
② Relative form :
A
−
(
B
∪
C
)
=
(
A
−
B
)
∩
(
A
−
C
)
A - (B \cup C) = ( A - B ) \cap (A - C)
A−(B∪C)=(A−B)∩(A−C) ,
A
−
(
B
∩
C
)
=
(
A
−
B
)
∪
(
A
−
C
)
A - (B \cap C) = ( A - B ) \cup (A - C)
A−(B∩C)=(A−B)∪(A−C)
6. absorptivity :
A
∪
(
A
∩
B
)
=
A
A \cup ( A \cap B ) = A
A∪(A∩B)=A ,
A
∩
(
A
∪
B
)
=
A
A \cap (A \cup B) = A
A∩(A∪B)=A
7. Law of zero :
A
∪
E
=
E
A \cup E = E
A∪E=E ,
A
∩
∅
=
∅
A \cap \varnothing = \varnothing
A∩∅=∅
8. The same thing :
A
∪
∅
=
A
A \cup \varnothing = A
A∪∅=A ,
A
∩
E
=
A
A \cap E = A
A∩E=A
( An empty set is the unit element of a union operation , The complete set is the unit element of intersection operation )
9. The law of excluded middle :
A
∪
∼
A
=
E
A \cup \sim A = E
A∪∼A=E
10. Law of contradiction :
A
∩
∼
A
=
∅
A \cap \sim A = \varnothing
A∩∼A=∅
11. Complementary law :
∼
∅
=
E
\sim \varnothing = E
∼∅=E ,
∼
E
=
∅
\sim E= \varnothing
∼E=∅
12. The law of double negation :
∼
(
∼
A
)
=
A
\sim ( \sim A ) = A
∼(∼A)=A
13. Complementary transformation law :
A
−
B
=
A
∩
∼
B
A - B = A \cap \sim B
A−B=A∩∼B
( The difference operation of sets is unnecessary , Intersection and complement operations of sets can replace difference operations )
Two 、 Generalization of set identities to set families
{
A
α
}
α
∈
S
\{ A_\alpha \}_{\alpha \in S}
{ Aα}α∈S For the set family ,
S
S
S Is the indicator set ,
α
\alpha
α It is the element in the indicator set , about
S
S
S In the collection
α
\alpha
α Elements , There is a set
A
α
A_\alpha
Aα With the corresponding ; be-all
A
α
A_\alpha
Aα Put it together , Form a family ;
B
B
B Is an arbitrary set ;
1 . Distributive law
Distributive law ① :
B
∪
(
⋂
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
B
∪
A
α
)
B \cup ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( B \cup A_\alpha )
B∪(⋂{ Aα}α∈S)=α∈S⋂(B∪Aα)
Find the intersection of each set element in the set family , Then with
B
B
B Perform and calculate ; Equivalent to Set each element in the family with
B
B
B Union , Then find the intersection of each of the above union operation results ;
Distributive law ② :
B
∩
(
⋃
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
B
∩
A
α
)
B \cap ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( B \cap A_\alpha )
B∩(⋃{ Aα}α∈S)=α∈S⋃(B∩Aα)
Join each set element in the set family , Then with
B
B
B Perform intersection ; Equivalent to Set each element in the family with
B
B
B Intersection , Then find the union of each of the above union operation results ;
2 . De Morgan law
De Morgan law ( absolute form ) ① :
∼
(
⋃
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
∼
A
α
)
\sim ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( \sim A_\alpha )
∼(⋃{ Aα}α∈S)=α∈S⋂(∼Aα)
Generalized union of set family , Then make up ; be equal to Each set in the set family , Make up first , Then find the generalized intersection ;
De Morgan law ( absolute form ) ② :
∼
(
⋂
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
∼
A
α
)
\sim ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( \sim A_\alpha )
∼(⋂{ Aα}α∈S)=α∈S⋃(∼Aα)
Generalized intersection of set families , Then make up ; be equal to Each set in the set family , Make up first , Then find the generalized union ;
De Morgan law ( Relative form ) ③ :
B
−
(
⋃
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
B
−
A
α
)
B - ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( B - A_\alpha )
B−(⋃{ Aα}α∈S)=α∈S⋂(B−Aα)
B
B
B Set subtraction Generalized union of set family ( Set family generalized union be relative to aggregate
B
B
B The complement of ) ; be equal to
B
B
B Set minus each set in the set family , First find the relative complement , Then find the generalized intersection ;
De Morgan law ( Relative form ) ④ :
B
−
(
⋂
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
B
−
A
α
)
B - ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( B - A_\alpha )
B−(⋂{ Aα}α∈S)=α∈S⋃(B−Aα)
B
B
B Set subtraction Generalized intersection of set families ( Set family generalized intersection be relative to aggregate
B
B
B The complement of ) ; be equal to
B
B
B Set minus each set in the set family , First find the relative complement , Then find the generalized union ;
边栏推荐
- [Yu Yue education] reference materials of political communication science of Communication University of China
- SAP UI5 应用开发教程之一百零五 - SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
- 2022 electrician (Advanced) examination papers and electrician (Advanced) examination skills
- [Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
- In Net 6 project using startup cs
- nodejs基础:浅聊url和querystring模块
- 在写web项目的时候,文件上传用到了smartupload,用了new string()进行转码,但是在数据库中,还是会出现类似扑克的乱码
- [untitled] 2022 safety production supervisor examination question bank and simulated safety production supervisor examination questions
- 2.14 simulation summary
- "Final review" 16/32-bit microprocessor (8086) basic register
猜你喜欢

Interaction free shell programming

The time has come for the domestic PC system to complete the closed loop and replace the American software and hardware system

JMeter starts from zero (III) -- simple use of regular expressions

Is pytorch open source?

Wechat applet + Alibaba IOT platform + Hezhou air724ug built with server version system analysis

Mutex and rwmutex in golang

What is pytorch? Is pytorch a software?

leetcode:297. Serialization and deserialization of binary tree

Cnopendata China Customs Statistics

The 10th China Cloud Computing Conference · China Station: looking forward to the trend of science and technology in the next decade
随机推荐
Fcpx template: sweet memory electronic photo album photo display animation beautiful memory
CVPR 2022 | Dalian Technology propose un cadre d'éclairage auto - étalonné pour l'amélioration de l'image de faible luminosité de la scène réelle
Deep dive kotlin synergy (19): flow overview
Arduino application development - LCD display GIF dynamic diagram
JS实现图片懒加载
Cnopendata China Customs Statistics
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
In Net 6 project using startup cs
[daily question] dichotomy - find a single dog (Bushi)
leetcode:297. Serialization and deserialization of binary tree
第十届中国云计算大会·中国站:展望未来十年科技走向
2022 beautician (intermediate) new version test questions and beautician (intermediate) certificate examination
pytorch项目怎么跑?
The latest analysis of the main principals of hazardous chemical business units in 2022 and the simulated examination questions of the main principals of hazardous chemical business units
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
2022 electrician (Advanced) examination papers and electrician (Advanced) examination skills
Half of 2022 is over, so we must hurry up
【刷题篇】接雨水(一维)
Supervised pre training! Another exploration of text generation!
105. Detailed introduction of linkage effect realization of SAP ui5 master detail layout mode