当前位置:网站首页>[set theory] set identities (idempotent law | exchange law | combination law | distribution rate | De Morgan law | absorption rate | zero law | identity | exclusion law | contradiction law | complemen
[set theory] set identities (idempotent law | exchange law | combination law | distribution rate | De Morgan law | absorption rate | zero law | identity | exclusion law | contradiction law | complemen
2022-07-03 04:12:00 【Programmer community】
One 、 Set identity
1. Idempotent law :
A
∪
A
=
A
A \cup A = A
A∪A=A ,
A
∩
A
=
A
A \cap A = A
A∩A=A
2. Commutative law :
A
∪
B
=
B
∪
A
A \cup B = B \cup A
A∪B=B∪A ,
A
∩
B
=
B
∩
A
A \cap B = B \cap A
A∩B=B∩A
3. Associative law :
(
A
∪
B
)
∪
C
=
A
∪
(
B
∪
C
)
(A \cup B) \cup C = A \cup ( B \cup C )
(A∪B)∪C=A∪(B∪C) ,
(
A
∩
B
)
∩
C
=
A
∩
(
B
∩
C
)
(A \cap B) \cap C = A \cap ( B \cap C )
(A∩B)∩C=A∩(B∩C)
4. Distribution rate :
A
∪
(
B
∩
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
A \cup ( B \cap C ) = ( A \cup B ) \cap ( A \cup C )
A∪(B∩C)=(A∪B)∩(A∪C) ,
A
∩
(
B
∪
C
)
=
(
A
∩
B
)
∪
(
A
∩
C
)
A \cap ( B \cup C ) = ( A \cap B ) \cup ( A \cap C )
A∩(B∪C)=(A∩B)∪(A∩C)
5. De Morgan law :
① absolute form :
∼
(
A
∪
B
)
=
∼
A
∩
∼
B
\sim ( A \cup B ) = \sim A \cap \sim B
∼(A∪B)=∼A∩∼B ,
∼
(
A
∩
B
)
=
∼
A
∪
∼
B
\sim ( A \cap B ) = \sim A \cup \sim B
∼(A∩B)=∼A∪∼B
② Relative form :
A
−
(
B
∪
C
)
=
(
A
−
B
)
∩
(
A
−
C
)
A - (B \cup C) = ( A - B ) \cap (A - C)
A−(B∪C)=(A−B)∩(A−C) ,
A
−
(
B
∩
C
)
=
(
A
−
B
)
∪
(
A
−
C
)
A - (B \cap C) = ( A - B ) \cup (A - C)
A−(B∩C)=(A−B)∪(A−C)
6. absorptivity :
A
∪
(
A
∩
B
)
=
A
A \cup ( A \cap B ) = A
A∪(A∩B)=A ,
A
∩
(
A
∪
B
)
=
A
A \cap (A \cup B) = A
A∩(A∪B)=A
7. Law of zero :
A
∪
E
=
E
A \cup E = E
A∪E=E ,
A
∩
∅
=
∅
A \cap \varnothing = \varnothing
A∩∅=∅
8. The same thing :
A
∪
∅
=
A
A \cup \varnothing = A
A∪∅=A ,
A
∩
E
=
A
A \cap E = A
A∩E=A
( An empty set is the unit element of a union operation , The complete set is the unit element of intersection operation )
9. The law of excluded middle :
A
∪
∼
A
=
E
A \cup \sim A = E
A∪∼A=E
10. Law of contradiction :
A
∩
∼
A
=
∅
A \cap \sim A = \varnothing
A∩∼A=∅
11. Complementary law :
∼
∅
=
E
\sim \varnothing = E
∼∅=E ,
∼
E
=
∅
\sim E= \varnothing
∼E=∅
12. The law of double negation :
∼
(
∼
A
)
=
A
\sim ( \sim A ) = A
∼(∼A)=A
13. Complementary transformation law :
A
−
B
=
A
∩
∼
B
A - B = A \cap \sim B
A−B=A∩∼B
( The difference operation of sets is unnecessary , Intersection and complement operations of sets can replace difference operations )
Two 、 Generalization of set identities to set families
{
A
α
}
α
∈
S
\{ A_\alpha \}_{\alpha \in S}
{ Aα}α∈S For the set family ,
S
S
S Is the indicator set ,
α
\alpha
α It is the element in the indicator set , about
S
S
S In the collection
α
\alpha
α Elements , There is a set
A
α
A_\alpha
Aα With the corresponding ; be-all
A
α
A_\alpha
Aα Put it together , Form a family ;
B
B
B Is an arbitrary set ;
1 . Distributive law
Distributive law ① :
B
∪
(
⋂
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
B
∪
A
α
)
B \cup ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( B \cup A_\alpha )
B∪(⋂{ Aα}α∈S)=α∈S⋂(B∪Aα)
Find the intersection of each set element in the set family , Then with
B
B
B Perform and calculate ; Equivalent to Set each element in the family with
B
B
B Union , Then find the intersection of each of the above union operation results ;
Distributive law ② :
B
∩
(
⋃
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
B
∩
A
α
)
B \cap ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( B \cap A_\alpha )
B∩(⋃{ Aα}α∈S)=α∈S⋃(B∩Aα)
Join each set element in the set family , Then with
B
B
B Perform intersection ; Equivalent to Set each element in the family with
B
B
B Intersection , Then find the union of each of the above union operation results ;
2 . De Morgan law
De Morgan law ( absolute form ) ① :
∼
(
⋃
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
∼
A
α
)
\sim ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( \sim A_\alpha )
∼(⋃{ Aα}α∈S)=α∈S⋂(∼Aα)
Generalized union of set family , Then make up ; be equal to Each set in the set family , Make up first , Then find the generalized intersection ;
De Morgan law ( absolute form ) ② :
∼
(
⋂
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
∼
A
α
)
\sim ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( \sim A_\alpha )
∼(⋂{ Aα}α∈S)=α∈S⋃(∼Aα)
Generalized intersection of set families , Then make up ; be equal to Each set in the set family , Make up first , Then find the generalized union ;
De Morgan law ( Relative form ) ③ :
B
−
(
⋃
{
A
α
}
α
∈
S
)
=
⋂
α
∈
S
(
B
−
A
α
)
B - ( \bigcup \{ A_\alpha \}_{\alpha \in S} ) = \bigcap_{\alpha \in S} ( B - A_\alpha )
B−(⋃{ Aα}α∈S)=α∈S⋂(B−Aα)
B
B
B Set subtraction Generalized union of set family ( Set family generalized union be relative to aggregate
B
B
B The complement of ) ; be equal to
B
B
B Set minus each set in the set family , First find the relative complement , Then find the generalized intersection ;
De Morgan law ( Relative form ) ④ :
B
−
(
⋂
{
A
α
}
α
∈
S
)
=
⋃
α
∈
S
(
B
−
A
α
)
B - ( \bigcap \{ A_\alpha \}_{\alpha \in S} ) = \bigcup_{\alpha \in S} ( B - A_\alpha )
B−(⋂{ Aα}α∈S)=α∈S⋃(B−Aα)
B
B
B Set subtraction Generalized intersection of set families ( Set family generalized intersection be relative to aggregate
B
B
B The complement of ) ; be equal to
B
B
B Set minus each set in the set family , First find the relative complement , Then find the generalized union ;
边栏推荐
- 2022 tea master (intermediate) examination questions and analysis and tea master (intermediate) practical examination video
- Application of I2C protocol of STM32F103 (read and write EEPROM)
- ZIP文件的导出
- 第十届中国云计算大会·中国站:展望未来十年科技走向
- 2022deepbrainchain biweekly report no. 104 (01.16-02.15)
- golang xxx. Go code template
- Reflection and planning of a sophomore majoring in electronic information engineering
- "Final review" 16/32-bit microprocessor (8086) basic register
- What is pytorch? Is pytorch a software?
- 深潜Kotlin协程(二十):构建 Flow
猜你喜欢
[Apple Push] IMessage group sending condition document (push certificate) development tool pushnotification
Mila, University of Ottawa | molecular geometry pre training with Se (3) invariant denoising distance matching
用户体验五要素
In Net 6 project using startup cs
Is pytorch difficult to learn? How to learn pytorch well?
IPv6 foundation construction experiment
The latest analysis of the main principals of hazardous chemical business units in 2022 and the simulated examination questions of the main principals of hazardous chemical business units
Data Lake three swordsmen -- comparative analysis of delta, Hudi and iceberg
Daily question - ugly number
Is pytorch open source?
随机推荐
Nat. Comm. | 使用Tensor-cell2cell对细胞通讯进行环境感知去卷积
[home push IMessage] software installation virtual host rental tothebuddy delay
105. SAP UI5 Master-Detail 布局模式的联动效果实现明细介绍
How to process the current cell with a custom formula in conditional format- How to address the current cell in conditional format custom formula?
Causal AI, a new paradigm for industrial upgrading of the next generation of credible AI?
Analysis of the reason why the server cannot connect remotely
CVPR 2022 | 大連理工提出自校准照明框架,用於現實場景的微光圖像增强
[mathematical logic] predicate logic (first-order predicate logic formula | example)
竞品分析撰写
【刷题篇】接雨水(一维)
类的基础语法
拆一辆十万元的比亚迪“元”,快来看看里面的有哪些元器件。
[mathematical logic] predicate logic (toe normal form | toe normal form conversion method | basic equivalence of predicate logic | name changing rules | predicate logic reasoning law)
Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
x Problem B
Wechat applet + Alibaba IOT platform + Hezhou air724ug build a serverless IOT system (III) -- wechat applet is directly connected to Alibaba IOT platform aliiot
js/ts底层实现双击事件
Error c2694 "void logger:: log (nvinfer1:: ilogger:: severity, const char *)": rewrite the restrictive exception specification of virtual functions than base class virtual member functions
Social phobia of contemporary young people (II)
2022 tea master (intermediate) examination questions and analysis and tea master (intermediate) practical examination video