当前位置:网站首页>从零开始实现一个简单的CycleGAN项目
从零开始实现一个简单的CycleGAN项目
2022-08-04 18:41:00 【江户川柯壮】
项目地址:https://github.com/jzsherlock4869/cyclegan-pytorch
pytorch 中CycleGAN(循环一致生成对抗网络)的简单且易于修改的实现
CycleGAN 的基本说明(来自原始论文):

使用“horse2zebra”数据集重新实现此 repo 的结果(没有参数调整,仍然有一些明显的伪影,您可以调整超参数以使其更好~)


安装和准备
下载 CycleGAN 的常用数据集并使用它们来训练和验证代码管道
Monet-Photo 传输:Kaggle Monet-Photo 传输
Horse-Zebra 转移:Kaggle Horse-Zebra 转移
然后按以下结构准备数据集文件夹:
├── monet_dataset
│ ├── monet_jpg
│ └── photo_jpg
└── zebra_dataset
├── testA
├── testB
├── trainA
└── trainB
Git 克隆这个 repo 并 cd 到根文件夹
git clone https://github.com/jzsherlock4869/cyclegan-pytorch
cd cyclegan-python
根据requirements.txt文件夹中的安装必要的python包
开始训练
将 dataroot 修改config/000_base_cyclegan_horse2zebra.yml为您自己的数据集路径,然后运行训练过程:
python train_cyclegan.py --opt configs/000_base_cyclegan_horse2zebra.yml
“ horse2zebra ”和“ photo2monet ”的数据集类已经在这个 repo 中实现。
get_photo2monet_train_dataloader要在您自己的数据集(域 A 和域 B)上进行训练,请将您自己的数据加载器编写 get_horse2zebra_train_dataloader为 data/sample_dataloader.py
def get_your_custom_train_dataloader(root_dir="your_path",
batch_size=8,
img_size=(256, 256)):
imgA_sub, imgB_sub = "subdirnameA", "subdirnameB" # sub directory name to your root_dir
postfix_set=["jpg"] # which postfix is your images
train_dataset = CycleGANDataset(root_dir, imgA_sub, imgB_sub, postfix_set, img_size)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
return train_dataloader
然后修改第train_cyclegan.py54-60 行以添加您的数据集(记得先导入它们!)
if which_dataset == 'horse2zebra':
train_dataloader = get_horse2zebra_train_dataloader(dataroot,
batch_size=batch_size,
img_size=img_size)
elif which_dataset == 'photo2monet':
train_dataloader = get_photo2monet_train_dataloader(dataroot,
batch_size=batch_size,
img_size=img_size)
# add lines here
elif which_dataset == 'your_custom_dataset':
train_dataloader = get_your_custom_train_dataloader(dataroot,
batch_size=batch_size,
img_size=img_size)
#add lines here
else:
raise NotImplementedError(f"Unrecognized dataset type : {which_dataset}")
参考
这段代码是对 CycleGAN 的重新实现,更易于理解和修改,尤其适合初学者。原论文是:
@inproceedings{CycleGAN2017, title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkss}, author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A}, booktitle={Computer Vision (ICCV), 2017 IEEE International Conference on}, year={2017} }
一个keras版本和教程,详细解释了CycleGAN的理论和过程:
https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
而且,这个代码库的代码架构和风格也参考了BasicSR和UnpairedSR,部分功能直接借鉴。欣赏他们的好作品~
欢迎star如果这个 repo 对你有帮助:)
边栏推荐
- Google AppSheet: 无需编程构建零代码应用
- Route lazy loading
- Enterprise survey correlation analysis case
- 【CCIG 2022】视觉大模型论坛
- ECCV 2022 | FPN错位对齐,实现高效半监督目标检测(PseCo)
- 网络运维管理从基础到实战-自用笔记(1)构建综合园区网、接入互联网
- powershell和cmd对比
- Go language Go language, understand Go language file operation in one article
- 【AI+医疗】斯坦福大学最新博士论文《深度学习在医学影像理解中的应用》,205页pdf
- mood swings
猜你喜欢
随机推荐
EuROC dataset format and related codes
PHP代码审计9—代码执行漏洞
Activity数据库字段说明
动态数组底层是如何实现的
C#爬虫之通过Selenium获取浏览器请求响应结果
Google Earth Engine APP - one-click online viewing of global images from 1984 to this year and loading an image analysis at the same time
PHP代码审计8—SSRF 漏洞
EasyCVR如何通过接口调用设备录像的倍速回放?
【填空题】130道面试填空题
天呐,七夕我收到9份告白~
【STM32】入门(五):串口TTL、RS232、RS485
EasyCVR calls the cloud recording API and returns an error and no recording file is generated. What is the reason?
部署LVS-DR群集
unity中实现ue眼球的渲染
CPU突然飙高系统反应慢,是怎么导致的?有什么办法排查?
limux入门3—磁盘与分区管理
Nintendo won't launch any new hardware until March 2023, report says
lc marathon 8.3
Thrift installation configuration
巴比特 | 元宇宙每日必读:微博动漫将招募全球各类虚拟偶像并为其提供扶持...









