当前位置:网站首页>dogs vs cats 二分类问题vgg16迁移学习

dogs vs cats 二分类问题vgg16迁移学习

2022-08-02 15:30:00 好像几块钱

在学习猫狗二分类问题时,我主要参考的是这篇博客:http://t.csdn.cn/J7L0n

然后数据集下载的是:Dogs vs. Cats | Kaggle

下载的数据集一共有25000张,这里采用CPU训练速度非常慢,25000张图片训练一次要4h,所以我们仅选取了200张dog,200张cat用来train,200张dog,200张cat作为test。(从原数据集的train中复制出自己的训练集)。

数据集结构如下:

  • data1
    • train
      • cat(200)
      • dog(200)
    • test
      • cat(200)
      • dog(200)

需要注意的是在以下代码中,train和test下必须要分类!

文件:data1

文件:dogs-vs-cats-迁移学习vgg16-train-small

import torch
import torchvision
from torchvision import datasets,transforms,models
import os
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import time

path='data1'

transform=transforms.Compose([
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
])

data_image={
    x:datasets.ImageFolder(root=os.path.join(path,x),
                         transform=transform)
    for x in ["train","test"]
}

data_loader_image={
    x:torch.utils.data.DataLoader(dataset=data_image[x],
                                  batch_size=4,
                                  shuffle=True)
    for x in ["train","test"]
}

use_gpu=torch.cuda.is_available()
print(use_gpu)

classes=data_image["train"].classes #按文件夹名字分类
classes_index=data_image["train"].class_to_idx #文件夹类名所对应的链值
print(classes)
print(classes_index)

print("train data set:",len(data_image["train"]))
print("test data set:",len(data_image["test"]))

x_train,y_train=next(iter(data_loader_image["train"]))
mean=[0.5, 0.5, 0.5]
std=[0.5, 0.5, 0.5]
img=torchvision.utils.make_grid(x_train)
img=img.numpy().transpose((1,2,0))
img=img*std+mean

print([classes[i] for i in y_train])
plt.imshow(img)
plt.show()

#选择预训练好的模型vgg16
model=models.vgg16(pretrained=True)
print(model)

for parma in model.parameters():
    parma.requires_grad=False   #预训练的网络不进行梯度更新
    
#改变模型的全连接层,从原模型的1000个类到本项目的2个类
model.classifier=torch.nn.Sequential(
    torch.nn.Linear(25088,4096),
    torch.nn.ReLU(),
    torch.nn.Dropout(p=0.5),
    torch.nn.Linear(4096,4096),
    torch.nn.ReLU(),
    torch.nn.Dropout(p=0.5),
    torch.nn.Linear(4096,2)
)

for index,parma in enumerate(model.classifier.parameters()):
    if index ==6:
        parma.requires_grad=True
        
if use_gpu:
    model=model.cuda()
print(parma)

#定义代价函数和优化器
cost=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.classifier.parameters())

print(model)

#开始训练模型
n_epochs=1
for epoch in range(n_epochs):
    since=time.time()
    print("Epoch{}/{}".format(epoch,n_epochs))
    print("-"*10)
    for param in ["train","test"]:
        if param == "train":
            model.train=True
        else:
            model.train=False
            
        running_loss=0.0
        running_correct=0
        batch=0
        for data in data_loader_image[param]:
            batch+=1
            x,y=data
            if use_gpu:
                x,y=Variable(x.cuda()),Variable(y.cuda())
            else:
                x,y=Variable(x),Variable(y)
            
            optimizer.zero_grad()
            y_pred=model(x)
            _,pred=torch.max(y_pred.data,1)
            
            loss=cost(y_pred,y)
            if param=="train":
                loss.backward()
                optimizer.step()
            running_loss+=loss.item() #running_loss+=loss.data[0]
            running_correct+=torch.sum(pred==y.data)
            if batch%10==0 and param=="train":
                print("Batch{},Train Loss:{:.4f},Train Acc:{:.4f}%".format(
                batch,running_loss/(4*batch),100*running_correct/(4*batch)))
                
        epoch_loss=running_loss/len(data_image[param])
        epoch_correct=100*running_correct/len(data_image[param])
        
        print("{}Loss:{:.4f},Correct:{:.4f}%".format(param,epoch_loss,epoch_correct))
    now_time=time.time()-since
    print("Training time is:{:.0f}m {:.0f}s".format(now_time//60,now_time%60))
    
torch.save(model,'model.pth')
#保存模型,备测试使用

输出结果: 

False
['cat', 'dog']
{'cat': 0, 'dog': 1}
train data set: 400
test data set: 400
['cat', 'cat', 'dog', 'cat']

VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
)
Parameter containing:
tensor([-0.0110, -0.0124], requires_grad=True)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU()
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU()
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=2, bias=True)
  )
)
Epoch0/1
----------
Batch10,Train Loss:1.3042,Train Acc:60.0000%
Batch20,Train Loss:1.0106,Train Acc:68.7500%
Batch30,Train Loss:1.1665,Train Acc:74.1667%
Batch40,Train Loss:1.1059,Train Acc:78.1250%
Batch50,Train Loss:0.9046,Train Acc:81.0000%
Batch60,Train Loss:1.4522,Train Acc:79.5833%
Batch70,Train Loss:1.8163,Train Acc:80.7143%
Batch80,Train Loss:1.6358,Train Acc:82.1875%
Batch90,Train Loss:1.5268,Train Acc:82.5000%
Batch100,Train Loss:1.4596,Train Acc:83.2500%
trainLoss:1.4596,Correct:83.2500%
testLoss:0.4573,Correct:92.7500%
Training time is:4m 33s

文件:dogs-vs-cats-迁移学习vgg16-test-small

import os
import torch
import torchvision
from torchvision import datasets,transforms,models
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import time
model=torch.load('model.pth')
path='data1'

transform=transforms.Compose([
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
])

data_test_img=datasets.ImageFolder(
    root="data1/test/",
    transform=transform
)

data_loader_test_img=torch.utils.data.DataLoader(
    dataset=data_test_img,
    batch_size=16,
    shuffle=True
)

classes=data_test_img.classes

image,label=next(iter(data_loader_test_img))
images=Variable(image)
y_pred=model(images)
_,pred=torch.max(y_pred.data,1)
print(pred)

img=torchvision.utils.make_grid(image)
img=img.numpy().transpose(1,2,0)
mean=[0.5, 0.5, 0.5]
std=[0.5, 0.5, 0.5]
img=img*std+mean
print("Pred Label:",[classes[i] for i in pred])
plt.imshow(img)
plt.show()

输出: 

tensor([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1])
Pred Label: ['dog', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'dog', 'dog', 'dog', 'dog', 'dog', 'dog', 'dog']

200张cat和200张dog的训练效果已经很可观,有GPU条件下,可以采用更多的数据,效果会非常理想! 

2022/7/30

原网站

版权声明
本文为[好像几块钱]所创,转载请带上原文链接,感谢
https://blog.csdn.net/llvyeriji/article/details/126078794