当前位置:网站首页>Cann operator: using iterators to efficiently realize tensor data cutting and blocking processing
Cann operator: using iterators to efficiently realize tensor data cutting and blocking processing
2022-07-04 17:29:00 【Huawei cloud developer Alliance】
Abstract : This article takes Diagonal For example, operators , Introduce and explain in detail how to use iterators to n dimension Tensor Carry out mass data reading based on position coordinates .
This article is shared from Huawei cloud community 《CANN operator : Use iterators to achieve Tensor Data cutting and block processing 》, author : CatherineWang .
Mission scenarios and objectives
stay CANN aicpu Operator development and implementation , Often need to be right n dimension Tensor Slice (slice)、 cutting (dice)、 Transposition (transpose)、 Exchange specified dimension data (shuffle) Wait for the operation . The above operations are essentially data reading in sequence according to the specified rules , And write the read data into the new data address .
This article takes Diagonal For example, operators , Introduce and explain in detail how to use iterators to n dimension Tensor Carry out mass data reading based on position coordinates .
Diagonal The operator wants to extract diagonal elements from the data with two specified dimensions , Finally, the diagonal element of the tensor is returned . In essence, the operator passes through the attribute dim1 and dim2 Determine a matrix , Returns the diagonal elements of the matrix ( There is an offset offset), And put it in the last dimension . Not dim1 and dim2 Dimensions , Will be regarded as batch Dimension processing .
Conventional scheme :
Scheme 1 : take shape by s, The number of elements is numel Of Input Tensor:x Turn into Eigen::Tensor:eigen_x; Yes eigen_x Conduct shuffle operation , take dim1 and dim2 Change to the penultimate dimension and the penultimate dimension ; adopt reshape Operation will eigen_x Change into a three-dimensional Eigen::Tensor:reshape_x,shape=(numel/ s[dim1]/s[dim2],s[dim1],s[dim2]); Take diagonal elements for the last two-dimensional data , And assign the final data to the output data address . Be careful : because Eigen::Tensor<typename T, int NumIndices_> Cannot dynamically set dimensions , namely NumIndices_ Item must be a specific value , Therefore, you need to define the corresponding dimension in advance Eigen::Tensor spare .
Option two : For one n Dimensional Tensor, utilize n layer for Cycle the positioning and reading of data , And take the diagonal value .
It can be seen that the above two schemes are cumbersome in the implementation of dynamic size input calculation , You need to set the corresponding dimension in advance according to the situation Eigen::Tensor or for Loop logic structure , That is, there are dimensional constraints .
Prepare knowledge and analysis
We know we'll AICPU in , For one Tensor, We can get through GetTensorShape、GetData Wait a function to get Tensor Shape and size 、 Specific data address and other information . However, we cannot directly obtain the data value of the specified position in the form of position coordinates .
1. step
First, introduce the step size (stride) The concept of ( If you have mastered this part of knowledge, you can directly jump to the next part ).stride Is in the specified dimension dim The step size necessary to jump from one element to the next in . for example , For one shape=(2, 3, 4, 5) Of Tensor, Its stride=(60, 20, 5, 1). So if you want to get the above Tensor The middle position coordinate is [1, 2, 1, 3] The data of , Just find the number in the data address 108(=60*1+20*2+5*1+3) Bit corresponding value .
2. iterator
Define iterator PositionIterator, Contains private members pos_ and shape_, among pos_ Is the initial position ,shape_ Standard shape . By overloading ++ Symbol , Yes pos_ Make changes , Realize the self increment operation of iterators . Based on the above iterators , It can realize the given shape Take positions in sequence . For a given shape=(d_1,d_2,…,d_n), From the initial position (0,0,…,0) Start , Take... In turn (0,0,…,0,0), (0,0,…,0,1),…,(0,0,…,0,d_n-1), (0,0,…,1,0), (0,0,…,1,1),…, (d_1 - 1,d_2 - 1,…,d_{n-1}-1,d_{n}-1).
in fact , The above iterator can be understood as a base , For a given standard shape shape_=(d_1,d_2,…,d_n), The first i Bit operation is every d_i Into the 1. At the same time through PositionIterator .End() Control the end of the iterator . The specific implementation is as follows :
template <typename T>
class PositionIterator {
public:
PositionIterator(){};
~PositionIterator(){};
PositionIterator(std::vector<T> stt, std::vector<T> sh) {
if (stt.size() != sh.size()) {
PositionIterator();
} else {
for (unsigned int i = 0; i < sh.size(); i++) {
if (stt[i] >= sh[i]) {
PositionIterator();
}
}
pos_ = stt;
shape_ = sh;
}
}
PositionIterator operator++() {
pos_[shape_.size() - 1] += 1;
for (unsigned int i = shape_.size() - 1; i > 0; i--) {
if (pos_[i] / shape_[i] != 0) {
pos_[i - 1] += pos_[i] / shape_[i];
pos_[i] = pos_[i] % shape_[i];
}
}
return *this;
}
bool End() {
if (pos_[0] != shape_[0]) {
return false;
}
return true;
}
std::vector<T> GetPos() { return pos_; }
std::vector<T> GetShape() { return shape_; }
private:
std::vector<T> pos_;
std::vector<T> shape_;
};
Diagonal The realization of operators
Using iterators , In general , We only need two floors for loop , Can be realized Diagonal The calculation of the operator . first floor for The loop is used to determine the division dim1 and dim2 Position coordinates of dimensions , The second floor for A loop is used for dim1 and dim2 The corresponding dimension determines the position of diagonal elements , Through such two layers for loop , The position of diagonal elements can be determined . Through such value processing , Compare with Eigen Realize the idea , The computing speed has been significantly improved , And there are no dimensional restrictions ,st The test results are compared as follows :
See the following code for specific implementation :
template <typename T>
uint32_t DiagonalCpuKernel::DoComputeType(CpuKernelContext &ctx,
const int64_t &offset,
const int64_t &dim1,
const int64_t &dim2) {
// Get the inuput and output
Tensor *input_x = ctx.Input(0);
Tensor *y = ctx.Output(0);
// Get some information of input
auto x_shape = input_x->GetTensorShape();
std::vector<int64_t> x_shape_ = x_shape->GetDimSizes();
const int64_t x_dim = x_shape->GetDims();
auto dataptr = reinterpret_cast<T *>(ctx.Input(0)->GetData());
auto y_dataptr = reinterpret_cast<T *>(y->GetData());
// Compute
// First, calculate the number of diagonal elements
int64_t dsize = OffsetSize(offset, dim1, dim2, x_shape_);
// To generate the input Tensor Step vector of x_stride
std::vector<int64_t> x_stride = ConstructStride<int64_t>(x_shape_);
// Discussion by situation ,2 Peacekeeping greater than 2 The d
if (x_dim != N2) {
//set the vx_shape and vx_stride
// Generate x_shape and x_stride Remove from dim1 and dim2 Corresponding to vx_shape And vx_stride
std::vector<int64_t> vx_shape, vx_stride;
for (unsigned int tmp_dim = 0; tmp_dim < x_shape_.size(); tmp_dim++) {
if (tmp_dim != dim1 && tmp_dim != dim2) {
vx_shape.push_back(x_shape_[tmp_dim]);
vx_stride.push_back(x_stride[tmp_dim]);
}
}
// set the y_shape, y_stride, vy_stride
// Generate output Tensor Shape and step vector of :y_shape and y_stride
std::vector<int64_t> y_shape = vx_shape;
y_shape.push_back(dsize);
std::vector<int64_t> y_stride =
ConstructStride<int64_t>(y_shape);
// Generate output Tensor Out of the last one-dimensional step vector :vy_stride
std::vector<int64_t> vy_stride = y_stride;
vy_stride.pop_back();
// Read diagonal data
std::vector<int64_t> v_start(vx_shape.size(), 0);
for (PositionIterator<int64_t> myiter(v_start, vx_shape); !myiter.End();
++myiter) {
// Use the iterator to determine the division dim1 and dim2 Position coordinates of dimensions
auto p = myiter.GetPos();
// The basic position values of input and output are calculated by step vector and position coordinates base_pos1 and outbase_pos
int64_t base_pos1 = MulSum<int64_t>(p, vx_stride);
int64_t outbase_pos = MulSum<int64_t>(p, vy_stride);
for (int i = 0; i < dsize; i++) {
// Combined with the foundation position value calculated above , Yes dim1 and dim2 The corresponding dimension determines the position of diagonal elements , And assign it to the output data address (get_data It involves taking elements from the upper diagonal or the lower diagonal , It does not affect the understanding of the function of iterators )
int64_t base_pos2 = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[outbase_pos + i] =
get_data(base_pos1 + base_pos2, offset, arr, dataptr);
}
}
} else {
for (int i = 0; i < dsize; i++) {
int64_t base_pos = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[i] = get_data(base_pos, offset, arr, dataptr);
}
}
return KERNEL_STATUS_OK;
}
Other uses of iterators
1、 Data slicing : Such as Sort In operator , Use iterators for Tensor Data about tmp_axis Take a dimension , For subsequent sorting operations .
for (position_iterator<int64_t> mit(v_start, v_shape); !mit.end(); ++mit) {
auto p = mit.get_pos();
int axis_len = input_shape_[tmp_axis];
std::vector<ValueIndex<T>> data_(axis_len);
int base_pos = mul_sum<int64_t>(p, v_stride);
for (int32_t i = 0; i < axis_len; i++) {
data_[i].value = x_dataptr[base_pos + i * input_stride[tmp_axis]];
data_[i].index = i;
}
2、 Data segmentation : Chunking can be iterated by two iterators , You can also use an iterator and two coordinate positions for loop
3、 About specifying dimensions dim, Yes Tensor Dimension reduction is split into N Son Tensor: Such as UniqueConsecutive In operator , First, we need to talk about attributes axis dimension , Will be the original Tensor The data is split into input_shape[axis] Height Tensor( This is used here vector Storage Tensor Data in ).
std::vector<std::vector<T1>> data_;
for (int64_t i = 0; i < dim0; i++) {
std::vector<T1> tmp_v1;
for (PositionIterator<int64_t> mit(v_start, v_shape); !mit.End(); ++mit) {
auto pos = mit.GetPos();
tmp_v1.push_back(
x_dataptr[MulSum<int64_t>(pos, v_stride) + i * input_stride[axis]]);
}
data_.push_back(tmp_v1);
}
Click to follow , The first time to learn about Huawei's new cloud technology ~
边栏推荐
- 周大福践行「百周年承诺」,真诚服务推动绿色环保
- 居家打工年入800多万,一共五份全职工作,他还有时间打游戏
- Solution du système de gestion de la chaîne d'approvisionnement du parc logistique intelligent
- Overflow: the combination of auto and Felx
- [acwing] 58 weeks 4489 Longest subsequence
- Height residual method
- Summary of tx.origin security issues
- Kunming Third Ring Road Closure project will pass through these places. Is there one near your home?
- VSCode修改缩进不成功,一保存就缩进四个空格
- 安信证券手机版下载 网上开户安全吗
猜你喜欢
第十八届IET交直流输电国际会议(ACDC2022)于线上成功举办
The test experience "tortured" by the PMP test is worth your review
Load test practice of pingcode performance test
矿产行业商业供应链协同系统解决方案:构建数智化供应链平台,保障矿产资源安全供应
码农版隐秘的角落:作为开发者最讨厌的5件
VB cannot access database stocks
How can programmers improve the speed of code writing?
To sort out messy header files, I use include what you use
detectron2安装方法
Hidden corners of coder Edition: five things that developers hate most
随机推荐
GO开发:如何利用Go单例模式保障流媒体高并发的安全性?
The Ministry of human resources and Social Security announced the new construction occupation
[glide] cache implementation - memory and disk cache
Li Kou today's question -1200 Minimum absolute difference
Implementation of super large-scale warehouse clusters in large commercial banks
Visual studio 2019 (localdb) mssqllocaldb SQL Server 2014 database version is 852 and cannot be opened. This server supports 782
【模板】【luogu P4630】Duathlon 铁人两项(圆方树)
防火墙基础透明模式部署和双机热备
Congratulations to Mr. Zhang Pengfei, chief data scientist of artefact, for winning the campaign Asia tech MVP 2022
S2b2b solution for lighting industry: efficiently enable the industrial supply chain and improve the economic benefits of enterprises
[Acwing] 58周赛 4489. 最长子序列
Why do you say that the maximum single table of MySQL database is 20million? Based on what?
Chow Tai Fook fulfills the "centenary commitment" and sincerely serves to promote green environmental protection
居家打工年入800多万,一共五份全职工作,他还有时间打游戏
新享科技发布小程序UniPro小优 满足客户移动办公场景
Understand ThreadLocal in one picture
Summary of tx.origin security issues
What grade does Anxin securities belong to? Is it safe to open an account
leetcode:421. 数组中两个数的最大异或值
egg. JS learning notes