当前位置:网站首页>Pytorch---使用Pytorch进行图像定位
Pytorch---使用Pytorch进行图像定位
2022-07-02 04:04:00 【水哥很水】
一、代码中的数据集可以通过以下链接获取
二、代码运行环境
Pytorch-gpu==1.10.1
Python==3.8
三、数据集处理代码如下所示
import os
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
import xml.etree.ElementTree as ET
import numpy as np
from torchvision import transforms
from PIL import Image
from torchvision.utils import draw_bounding_boxes
class PetDataset(Dataset):
def __init__(self, images_path, labels, transform):
super(PetDataset, self).__init__()
self.images_path = images_path
self.labels = labels
self.transform = transform
def __getitem__(self, index):
img = self.images_path[index]
pil_img = Image.open(img).convert('RGB')
img_tensor = self.transform(pil_img)
label1, label2, label3, label4 = self.labels[index]
return img_tensor, label1, label2, label3, label4
def __len__(self):
return len(self.images_path)
def to_labels(path):
xml_file = open(path, encoding='utf-8')
tree = ET.parse(xml_file)
root = tree.getroot()
width = float(root.find('size').find('width').text)
height = float(root.find('size').find('height').text)
xmin = float(root.find('object').find('bndbox').find('xmin').text) / width
ymin = float(root.find('object').find('bndbox').find('ymin').text) / height
xmax = float(root.find('object').find('bndbox').find('xmax').text) / width
ymax = float(root.find('object').find('bndbox').find('ymax').text) / height
return [xmin, ymin, xmax, ymax]
def load_data():
DATASET_PATH = r'/Users/leeakita/Desktop/dataset'
BATCH_SIZE = 32
XML_PATH = os.path.join(DATASET_PATH, 'xmls')
IMAGE_PATH = os.path.join(DATASET_PATH, 'images')
xml_names = os.listdir(XML_PATH)
file_names = [name.split('.')[0] for name in xml_names]
image_paths = [os.path.join(IMAGE_PATH, file_name + '.jpg') for file_name in file_names]
xml_paths = [os.path.join(XML_PATH, file_name + '.xml') for file_name in file_names]
labels = [to_labels(xml_path) for xml_path in xml_paths]
np.random.seed(2022)
index = np.random.permutation(len(image_paths))
image_paths = np.array(image_paths)[index]
labels = np.array(labels)[index]
labels = labels.astype(np.float32)
train_split = int(len(image_paths) * 0.8)
train_images = image_paths[:train_split]
train_labels = labels[:train_split]
test_images = image_paths[train_split:]
test_labels = labels[train_split:]
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
train_ds = PetDataset(images_path=train_images, labels=train_labels, transform=transform)
test_ds = PetDataset(images_path=test_images, labels=test_labels, transform=transform)
train_dl = DataLoader(dataset=train_ds, batch_size=BATCH_SIZE, shuffle=True)
test_dl = DataLoader(dataset=test_ds, batch_size=BATCH_SIZE)
return train_dl, test_dl
if __name__ == '__main__':
trainn, testt = load_data()
image, xminn, yminn, xmaxn, ymaxn = next(iter(testt))
index = 6
image, xminn, yminn, xmaxn, ymaxn = image[index], xminn[index], yminn[index], xmaxn[index], ymaxn[index]
boxes = [xminn.item() * 224, yminn.item() * 224, xmaxn.item() * 224, ymaxn.item() * 224]
boxes = torch.FloatTensor(boxes)
boxes = boxes.unsqueeze(0)
result = draw_bounding_boxes(image=torch.as_tensor(data=image * 255, dtype=torch.uint8), boxes=boxes, colors='red')
plt.imshow(result.permute(1, 2, 0).numpy())
plt.show()
四、模型的构建代码如下所示
import torch
import torchvision
from torch import nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
resnet = torchvision.models.resnet101(pretrained=True)
self.conv_base = nn.Sequential(*list(resnet.children())[:-1])
self.fc1 = nn.Linear(in_features=resnet.fc.in_features, out_features=1)
self.fc2 = nn.Linear(in_features=resnet.fc.in_features, out_features=1)
self.fc3 = nn.Linear(in_features=resnet.fc.in_features, out_features=1)
self.fc4 = nn.Linear(in_features=resnet.fc.in_features, out_features=1)
def forward(self, x):
x = self.conv_base(x)
x = torch.squeeze(x)
x1 = self.fc1(x)
x2 = self.fc2(x)
x3 = self.fc3(x)
x4 = self.fc4(x)
return x1, x2, x3, x4
if __name__ == '__main__':
model = Net()
五、模型的训练代码如下所示
import numpy as np
import torch
from data_loader import load_data
from model_loader import Net
import tqdm
import os
# 环境变量的配置
devices = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据的加载
train_dl, test_dl = load_data()
# 模型的加载
model = Net()
model.to(device=devices)
# 训练的相关配置
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.Adam(params=model.parameters(), lr=0.0001)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=7, gamma=0.7)
# 开始进行训练
for epoch in range(50):
model.train()
train_tqdm = tqdm.tqdm(iterable=train_dl, total=len(train_dl))
train_tqdm.set_description_str('Train epoch: {:2d}'.format(epoch))
train_loss_sum = []
for image, xmin, ymin, xmax, ymax in train_tqdm:
image, xmin, ymin, xmax, ymax = image.to(devices), xmin.to(devices), ymin.to(devices), xmax.to(
devices), ymax.to(devices)
pred_xmin, pred_ymin, pred_xmax, pred_ymax = model(image)
pred_xmin, pred_ymin, pred_xmax, pred_ymax = pred_xmin.squeeze(), pred_ymin.squeeze(), pred_xmax.squeeze(), pred_ymax.squeeze()
loss_xmin = loss_fn(pred_xmin, xmin)
loss_ymin = loss_fn(pred_ymin, ymin)
loss_xmax = loss_fn(pred_xmax, xmax)
loss_ymax = loss_fn(pred_ymax, ymax)
loss = loss_xmin + loss_ymin + loss_xmax + loss_ymax
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
train_loss_sum.append(loss.item())
train_tqdm.set_postfix_str('loss is :{:14f}'.format(np.array(train_loss_sum).mean()))
train_tqdm.close()
with torch.no_grad():
model.eval()
test_tqdm = tqdm.tqdm(iterable=test_dl, total=len(test_dl))
test_tqdm.set_description_str('Test epoch: {:2d}'.format(epoch))
test_loss_sum = []
for image, xmin, ymin, xmax, ymax in test_tqdm:
image, xmin, ymin, xmax, ymax = image.to(devices), xmin.to(devices), ymin.to(devices), xmax.to(
devices), ymax.to(devices)
pred_xmin, pred_ymin, pred_xmax, pred_ymax = model(image)
pred_xmin, pred_ymin, pred_xmax, pred_ymax = pred_xmin.squeeze(), pred_ymin.squeeze(), pred_xmax.squeeze(), pred_ymax.squeeze()
loss_xmin = loss_fn(pred_xmin, xmin)
loss_ymin = loss_fn(pred_ymin, ymin)
loss_xmax = loss_fn(pred_xmax, xmax)
loss_ymax = loss_fn(pred_ymax, ymax)
loss = loss_xmin + loss_ymin + loss_xmax + loss_ymax
test_loss_sum.append(loss.item())
test_tqdm.set_postfix_str('loss is :{:14f}'.format(np.array(test_loss_sum).mean()))
test_tqdm.close()
# 进行模型的保存
if not os.path.exists(os.path.join('model_data')):
os.mkdir(os.path.join('model_data'))
torch.save(model.state_dict(), os.path.join('model_data', 'model.pth'))
六、模型的预测代码如下所示
import torch
from data_loader import load_data
from model_loader import Net
import os
from torchvision.utils import draw_bounding_boxes
import matplotlib.pyplot as plt
# 数据的加载
train_dl, test_dl = load_data()
image, xmin, ymin, xmax, ymax = next(iter(test_dl))
# 模型的加载
model = Net()
model_state_dict = torch.load(os.path.join('model_data', 'model.pth'), map_location='cpu')
model.load_state_dict(model_state_dict)
model.eval()
# 开始进行预测
index = 0
with torch.no_grad():
pred_xmin, pred_ymin, pred_xmax, pred_ymax = model(image)
pred_xmin, pred_ymin, pred_xmax, pred_ymax = pred_xmin[index], pred_ymin[index], pred_xmax[index], pred_ymax[index]
pre_boxes = [pred_xmin.item() * 224, pred_ymin.item() * 224, pred_xmax.item() * 224, pred_ymax.item() * 224]
pre_boxes = torch.FloatTensor(pre_boxes)
pre_boxes = torch.unsqueeze(input=pre_boxes, dim=0)
label_boxes = [xmin[index].item() * 224, ymin[index].item() * 224, xmax[index].item() * 224,
ymax[index].item() * 224]
label_boxes = torch.FloatTensor(label_boxes)
label_boxes = torch.unsqueeze(input=label_boxes, dim=0)
img = image[index]
img = torch.as_tensor(data=img * 255, dtype=torch.uint8)
result = draw_bounding_boxes(image=img, boxes=pre_boxes, colors='red')
result = draw_bounding_boxes(image=result, boxes=label_boxes, colors='blue')
plt.figure(figsize=(8, 8), dpi=500)
plt.axis('off')
plt.imshow(result.permute(1, 2, 0))
plt.savefig('result.png')
plt.show()
七、代码的运行结果如下所示

边栏推荐
- Force buckle 540 A single element in an ordered array
- Document declaration and character encoding
- The 10th Blue Bridge Cup single chip microcomputer provincial competition
- XSS prevention
- 树莓派GPIO引脚控制红绿灯与轰鸣器
- [untitled]
- [personal notes] PHP common functions - custom functions
- Jetpack's livedata extension mediatorlivedata
- Use a mask to restrict the input of the qlineedit control
- 66.qt quick-qml自定义日历组件(支持竖屏和横屏)
猜你喜欢
![[wireless image transmission] FPGA based simple wireless image transmission system Verilog development, matlab assisted verification](/img/77/4df7a1439ff1a53f94d409a19a47d6.png)
[wireless image transmission] FPGA based simple wireless image transmission system Verilog development, matlab assisted verification

Déchirure à la main - tri

Document declaration and character encoding

Jetpack之LiveData扩展MediatorLiveData

Installation and use of blue lake

The second game of the 12th provincial single chip microcomputer competition of the Blue Bridge Cup

10 minutes to understand CMS garbage collector in JVM

文档声明与字符编码

MySQL advanced SQL statement 2

【力扣刷题】15.三数之和(双指针);17.电话号码的字母组合(递归回溯)
随机推荐
Analysis of the overall design principle of Nacos configuration center (persistence, clustering, information synchronization)
Dare to go out for an interview without learning some distributed technology?
[untitled]
Blue Bridge Cup SCM digital tube skills
云服务器的安全设置常识
[personal notes] PHP common functions - custom functions
Homework in Chapter 3 of slam course of dark blue vision -- derivative application of T6 common functions
Hand tear - sort
How should the team choose the feature branch development mode or trunk development mode?
Influence of air resistance on the trajectory of table tennis
Qt插件之Qt Designer插件实现
Vite: configure IP access
Feature Engineering: summary of common feature transformation methods
Li Kou interview question 02.08 Loop detection
Raspberry pie GPIO pin controls traffic light and buzzer
如何解决在editor模式下 无法删除物体的问题
Opencv learning example code 3.2.4 LUT
WiFi 5GHz frequency
The 8th Blue Bridge Cup single chip microcomputer provincial competition
MySQL advanced SQL statement 2