当前位置:网站首页>Measurement fitting based on Halcon learning [III] PM_ measure_ board. Hdev routine

Measurement fitting based on Halcon learning [III] PM_ measure_ board. Hdev routine

2022-07-05 07:56:00 BoomBiuBiu

This sample program shows the use of shape models for template matching to find an object . Besides , It also shows how to use the detected position and the rotation of the object , Measure and fit the chip pins

* close pc Update 
dev_update_pc ('off')
* Close the update of the window 
dev_update_window ('off')
* Close the update of variable window during program operation 
dev_update_var ('off')

* Virtual image acquisition ,seq A file is a sequence of text , Read the text line by line , Open the image corresponding to the text path , Simulate a camera to collect images 
open_framegrabber ('File', 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, 'default', 'board/board.seq', 'default', -1, 1, FGHandle)
* Collect single frame image , Get the width and height of the image 
grab_image (Image, FGHandle)

* Get the width and height of the image 
get_image_size (Image, Width, Height)
dev_close_window ()

* Open two windows 
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
dev_open_window (Height + 70, 0, Width, 120, 'black', WindowHandleText)
dev_set_window (WindowHandle)

* Set the font of two windows 
set_display_font (WindowHandle, 16, 'mono', 'true', 'false')
set_display_font (WindowHandleText, 16, 'mono', 'true', 'false')
dev_set_color ('red')

* Display images 
dev_display (Image)

* Define some parameter drawings ROI
Row1 := 188
Column1 := 182
Row2 := 298
Column2 := 412
gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)
* get ROI Row and column coordinates 
area_center (Rectangle, Area, Row, Column)

* Define some parameters of the measurement rectangle ROI
Rect1Row := -102
Rect1Col := 5
Rect2Row := 107
Rect2Col := 5
RectPhi := 0

* Here is the half width and half height of the rectangle 
RectLength1 := 170
RectLength2 := 5

* Draw based on the row and column coordinates of the middle rectangle ROI
gen_rectangle2 (Rectangle1, Row + Rect1Row, Column + Rect1Col, RectPhi, RectLength1, RectLength2)
gen_rectangle2 (Rectangle2, Row + Rect2Row, Column + Rect2Col, RectPhi, RectLength1, RectLength2)

* Start creating template 
reduce_domain (Image, Rectangle, ImageReduced)

* The first parameter creates the template ROI Area image 
* The second parameter is the number of pyramid layers 
* The third parameter is the starting angle of the template 
* The fourth parameter is the total angle of the template 
* The fifth parameter is the angle step of the template , I'm going to set it to 1°, In other words, a total of 360 Templates for finding images 
* The sixth parameter is whether to optimize template points , Choose not to optimize here 
* The seventh parameter polarity selection , If you choose to use polarity, you must select the object under the same background as the template , For example, in the template, black objects are selected against a white background , When searching, you are also looking for Black targets under a white background 
* The eighth parameter is the template gray threshold , That is, the points with gray difference exceeding this value will be selected as template points ,
* The ninth parameter is the minimum gray value , Used to remove the influence of noise 
* The last parameter template ID, You need to use the template later through this ID lookup 
create_shape_model (ImageReduced, 4, 0, rad(360), rad(1), 'none', 'use_polarity', 30, 10, ModelID)

* Get the outline of the template 【 notes : The contour line is at the origin 】 Subpixel 
get_shape_model_contours (ShapeModel, ModelID, 1)

* Affine transformation , Make the area return to its original position 
hom_mat2d_identity (HomMat2DIdentity)
hom_mat2d_translate (HomMat2DIdentity, Row, Column, HomMat2DTranslate)
affine_trans_contour_xld (ShapeModel, ShapeModelTrans, HomMat2DTranslate)

*------------------ The operator below can also be used to replace --------------------------
*vector_angle_to_rigid (0, 0, 0, Row, Column, 0, HomMat2DTranslate)

* display picture , Set a series of parameters 
dev_display (Image)
dev_set_color ('green')
dev_display (ShapeModelTrans)

* Set the parameters of the measuring rectangle 
dev_set_color ('blue')
dev_set_draw ('margin')
dev_set_line_width (3)
dev_display (Rectangle1)
dev_display (Rectangle2)

* Set reminders 
dev_set_draw ('fill')
dev_set_line_width (1)
dev_set_color ('yellow')
disp_message (WindowHandle, ['Press left button to start','and stop the demo'], 'window', 12, 12, 'black', 'true')

* Wait for the mouse button to press , Return to the precise image coordinates of the mouse pointer and the pixel pressing the mouse button in the output window 
get_mbutton (WindowHandle, Row3, Column3, Button1)
wait_seconds (0.5)

Button := 0
* Has been performed , When the left mouse button is pressed Button=1 The program exits the loop 
while (Button != 1)
    dev_set_window (WindowHandle)
    dev_set_part (0, 0, Height - 1, Width - 1)
    * Get a frame of image from the virtual camera and change the angle    
    grab_image (ImageCheck, FGHandle)
    dev_display (ImageCheck)
    * Start timing 
    count_seconds (S1)
    * Begin to match 
    
    * Find template 
    * The first parameter is used to find the image 
    * The second parameter template ID
    * The third parameter is the starting angle 
    * The fourth parameter is the total angle value found , Here is 360 Search in all directions 
    * The fifth parameter is the minimum score , The found image will have a similarity comparison with the original template , The closer the 1 The more similar the images are 
    * The sixth parameter is the number of searches , by 0 Time is to find out all the targets 
    * The seventh parameter is the maximum overlap , Indicates how much overlap can be found between the two targets 
    * The eighth parameter is sub-pixel accuracy selection 
    * The ninth parameter is the number of pyramid layers 
    * The tenth parameter is search greed , The bigger the search, the faster , It means that the less careful you search 
    * The eleventh parameter is the row coordinates of the target searched , When multiple targets are found, this parameter is an array 
    * The twelfth parameter is the column coordinates of the target searched , When multiple targets are found, this parameter is an array 
    * The angle value of the target searched by the thirteenth parameter , When multiple targets are found, this parameter is an array 
    * The score value of the target searched by the 14th parameter , The closer the 1 The more similar it is to the template , When multiple targets are found, this parameter is an array 
    find_shape_model (ImageCheck, ModelID, 0, rad(360), 0.7, 1, 0.5, 'least_squares', 4, 0.7, RowCheck, ColumnCheck, AngleCheck, Score)
    count_seconds (S2)
    dev_display (ImageCheck)

    * Determine whether there is a picture in the window , Prevent error reporting 
    if (|Score| > 0)
        dev_set_color ('green')
        * Affine transform the template , Change to the location of the searched area , Convenient for visual display on the original drawing 
        hom_mat2d_identity (HomMat2DIdentity)
        hom_mat2d_translate (HomMat2DIdentity, RowCheck, ColumnCheck, HomMat2DTranslate)
        hom_mat2d_rotate (HomMat2DTranslate, AngleCheck, RowCheck, ColumnCheck, HomMat2DRotate)
        affine_trans_contour_xld (ShapeModel, ShapeModelTrans, HomMat2DRotate)

        * Display the template outline after translation and rotation 
        dev_display (ShapeModelTrans)

        * Apply arbitrary affine 2D Transform to pixel coordinates .
        affine_trans_pixel (HomMat2DRotate, Rect1Row, Rect1Col, Rect1RowCheck, Rect1ColCheck)
        affine_trans_pixel (HomMat2DRotate, Rect2Row, Rect2Col, Rect2RowCheck, Rect2ColCheck)
        gen_rectangle2 (Rectangle1Check, Rect1RowCheck, Rect1ColCheck, AngleCheck, RectLength1, RectLength2)
        gen_rectangle2 (Rectangle2Check, Rect2RowCheck, Rect2ColCheck, AngleCheck, RectLength1, RectLength2)


*------ The following operators can be used instead ---------*
**** The second method 
        *vector_angle_to_rigid (Row, Column, 0, RowCheck, ColumnCheck, AngleCheck, HomMat2D)
        *affine_trans_pixel (HomMat2D, Rect1Row+Row, Rect1Col+Column, Rect11RowCheck, Rect11ColCheck)
        *affine_trans_pixel (HomMat2D, Rect2Row+Row, Rect2Col+Column, Rect22RowCheck, Rect22ColCheck)

*** The third method 
       
        *vector_angle_to_rigid (0, 0, 0, RowCheck, ColumnCheck, AngleCheck, HomMat2D)
        *affine_trans_pixel (HomMat2D, Rect1Row, Rect1Col, Rect1RowCheck, Rect1ColCheck)
        *affine_trans_pixel (HomMat2D, Rect2Row, Rect2Col, Rect2RowCheck, Rect2ColCheck)

        * Display the measurement rectangle 
        dev_set_color ('blue')
        dev_set_draw ('margin')
        dev_set_line_width (3)
        dev_display (Rectangle1Check)
        dev_display (Rectangle2Check)

        * Generate a measurement rectangle 
        dev_set_draw ('fill')
        count_seconds (S3)
        gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck, AngleCheck, RectLength1, RectLength2, Width, Height, 'bilinear', MeasureHandle1)
        gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck, AngleCheck, RectLength1, RectLength2, Width, Height, 'bilinear', MeasureHandle2)
        
        * The following function is to extract the edge pairs perpendicular to the test rectangle , Imagine doing gray-scale difference in the direction of the long axis of the rectangle ,
        * The obtained curve should have an upper sharp angle and a lower sharp angle for each distance 
        * The first one with a sharp corner X coordinate RowEdgeFirst, The first one with a sharp corner Y coordinate ColumnEdgeFirst
        * The first one in the lower corner X coordinate RowEdgeSecond, The first one in the lower corner Y coordinate ColumnEdgeSecond
        * The first parameter is the input image 
        * The second parameter measures the handle of the rectangle 
        * The third parameter (1.5) Is Gaussian smoothing sigma value 
        * Fourth parameter (30) Is the lowest threshold , The height value corresponding to the above sharp corner 
        * Fifth parameter ('negative') Is the black-and-white direction of the above difference value , by negative The first point is from white to black , If it's for positive From black to white is the first point 
        * The sixth parameter is ('all') Is to return all measured values , That is, return to all sharp corner positions 
        * The ninth parameter (AmplitudeFirst) Is the maximum amplitude of the upper sharp angle 
        *(PinwWidth) Is the distance between the upper corner and the lower corner 
        *(PinDistance) Is the distance between the lower corner and the upper corner 
        
        measure_pairs (ImageCheck, MeasureHandle1, 2, 90, 'positive', 'all', RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, RowEdgeSecond1, ColumnEdgeSecond1, AmplitudeSecond1, IntraDistance1, InterDistance1)
        measure_pairs (ImageCheck, MeasureHandle2, 2, 90, 'positive', 'all', RowEdgeFirst2, ColumnEdgeFirst2, AmplitudeFirst2, RowEdgeSecond2, ColumnEdgeSecond2, AmplitudeSecond2, IntraDistance2, InterDistance2)
        close_measure (MeasureHandle1)
        close_measure (MeasureHandle2)

        count_seconds (S4)
        * Show lines 
        dev_set_color ('red')
        disp_line (WindowHandle, RowEdgeFirst1 - RectLength2 * cos(AngleCheck), ColumnEdgeFirst1 - RectLength2 * sin(AngleCheck), RowEdgeFirst1 + RectLength2 * cos(AngleCheck), ColumnEdgeFirst1 + RectLength2 * sin(AngleCheck))
        disp_line (WindowHandle, RowEdgeSecond1 - RectLength2 * cos(AngleCheck), ColumnEdgeSecond1 - RectLength2 * sin(AngleCheck), RowEdgeSecond1 + RectLength2 * cos(AngleCheck), ColumnEdgeSecond1 + RectLength2 * sin(AngleCheck))
        disp_line (WindowHandle, RowEdgeFirst2 - RectLength2 * cos(AngleCheck), ColumnEdgeFirst2 - RectLength2 * sin(AngleCheck), RowEdgeFirst2 + RectLength2 * cos(AngleCheck), ColumnEdgeFirst2 + RectLength2 * sin(AngleCheck))
        disp_line (WindowHandle, RowEdgeSecond2 - RectLength2 * cos(AngleCheck), ColumnEdgeSecond2 - RectLength2 * sin(AngleCheck), RowEdgeSecond2 + RectLength2 * cos(AngleCheck), ColumnEdgeSecond2 + RectLength2 * sin(AngleCheck))
        dev_set_line_width (1)

        * Displays the total number of pins , The total number is the sum of the number of pins on both sides 
        NumLeads := |IntraDistance1| + |IntraDistance2|
        MinDistance := min([InterDistance1,InterDistance2])
        dev_set_window (WindowHandleText)
        dev_set_part (0, 0, 119, Width - 1)
        dev_clear_window ()

        * Show results 
        disp_message (WindowHandleText, 'Matching: Time: ' + ((S2 - S1) * 1000)$'5.2f' + 'ms , Score: ' + Score$'7.5f', 'image', 20, 20, 'green', 'false')
        disp_message (WindowHandleText, 'Measure:  Time: ' + ((S4 - S3) * 1000)$'5.2f' + ' ms, Num. leads: ' + NumLeads$'2d', 'image', 50, 20, 'red', 'false')
        disp_message (WindowHandleText, '          Min. lead dist: ' + MinDistance$'6.3f', 'image', 80, 20, 'red', 'false')
    endif
    dev_error_var (Error, 1)
    dev_set_check ('~give_error')
    get_mposition (WindowHandle, R, C, Button)
    dev_error_var (Error, 0)
    dev_set_check ('give_error')
    if (Error != H_MSG_TRUE)
        Button := 0
    endif
endwhile
dev_set_window (WindowHandleText)
dev_close_window ()

* Clear template 
clear_shape_model (ModelID)
close_framegrabber (FGHandle)


This is a routine encountered in the learning process , Some Chinese explanations refer to other bloggers , If there is anything incorrect, please point out , Thank you. ! 

原网站

版权声明
本文为[BoomBiuBiu]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202140548302245.html