当前位置:网站首页>LeetCode每日一题(1997. First Day Where You Have Been in All the Rooms)

LeetCode每日一题(1997. First Day Where You Have Been in All the Rooms)

2022-07-06 06:26:00 wangjun861205

There are n rooms you need to visit, labeled from 0 to n - 1. Each day is labeled, starting from 0. You will go in and visit one room a day.

Initially on day 0, you visit room 0. The order you visit the rooms for the coming days is determined by the following rules and a given 0-indexed array nextVisit of length n:

Assuming that on a day, you visit room i,
if you have been in room i an odd number of times (including the current visit), on the next day you will visit a room with a lower or equal room number specified by nextVisit[i] where 0 <= nextVisit[i] <= i;
if you have been in room i an even number of times (including the current visit), on the next day you will visit room (i + 1) mod n.
Return the label of the first day where you have been in all the rooms. It can be shown that such a day exists. Since the answer may be very large, return it modulo 109 + 7.

Example 1:

Input: nextVisit = [0,0]
Output: 2

Explanation:

  • On day 0, you visit room 0. The total times you have been in room 0 is 1, which is odd.
    On the next day you will visit room nextVisit[0] = 0

  • On day 1, you visit room 0, The total times you have been in room 0 is 2, which is even.
    On the next day you will visit room (0 + 1) mod 2 = 1

  • On day 2, you visit room 1. This is the first day where you have been in all the rooms.

    Example 2:

Input: nextVisit = [0,0,2]
Output: 6

Explanation:
Your room visiting order for each day is: [0,0,1,0,0,1,2,…].
Day 6 is the first day where you have been in all the rooms.

Example 3:

Input: nextVisit = [0,1,2,0]
Output: 6

Explanation:
Your room visiting order for each day is: [0,0,1,1,2,2,3,…].
Day 6 is the first day where you have been in all the rooms.

Constraints:

  • n == nextVisit.length
  • 2 <= n <= 105
  • 0 <= nextVisit[i] <= i

这题好像以前做过,也可能只是相似的, 但是自己一点印象都没有了

最近做的题都贱嗖嗖的, 难的不在解题思路, 都在各种细枝末节上

假设 dp[i][odd]为奇数次进到第 i 个房间所需要的步骤, dp[i][even]为偶数次进入到第 i 个房间所需要的步骤, 那么我们可以推倒出如下两条;

dp[i][odd] = dp[i-1][even] + 1
dp[i][even] = dp[i][odd] + (dp[i][odd]-dp[k][odd]) + 1

其中 k = next_visit[i]
这两条中的第一条好理解, 只有欧数次进入一个房间后才能向后推进一个房间。 第二条实际表达的是, 偶数次进入第 i 个房间的前提一定是有一个奇数次进入了, 因为是奇数次进入所以我们需要返回到前面的某一点, 注意,题目说的是返回到 next_visit[i]之前的任意一点,但是我们要的是最小距离, 按照题目的规则,我们返回的点距离当前点越远,我们走回当前点所需的步数一定是越多的, 所以不用考虑, 我们选择的返回点一定是 next_visit[i], 所以我们就相当于重走了一遍从 next_visit[i]到 i 的距离, 所以就是 dp[i][odd] - dp[k][odd] + 1。 整个计算过程需要注意, 因为结果都是做过 mod 运算的, 所以有可能出现 dp[i][odd] < dp[k][odd]的情况, 这时候算出来的结果就是负数了, 要避免这种情况可以将 dp[i][odd] + 10.pow(9) + 7


use std::collections::HashMap;

impl Solution {
    
    fn dp(
        next_visit: &Vec<i32>,
        i: usize,
        is_odd: bool,
        cache: &mut HashMap<(usize, bool), i128>,
    ) -> i128 {
    
        let m = 10i128.pow(9) + 7;
        if is_odd {
    
            let next = if let Some(c) = cache.get(&(i - 1, false)) {
    
                *c
            } else {
    
                Solution::dp(next_visit, i - 1, false, cache)
            };
            let ans = (next + 1) % m;
            cache.insert((i, is_odd), ans);
            return ans;
        }
        let odd = if let Some(c) = cache.get(&(i, true)) {
    
            *c
        } else {
    
            Solution::dp(next_visit, i, true, cache)
        };
        let prev = if let Some(c) = cache.get(&(next_visit[i] as usize, true)) {
    
            *c
        } else {
    
            Solution::dp(next_visit, next_visit[i] as usize, true, cache)
        };
        let ans = if 2 * odd < prev {
    
            (2 * odd + m - prev + 1) % m
        } else {
    
            (2 * odd - prev + 1) % m
        };
        cache.insert((i, is_odd), ans);
        ans
    }
    pub fn first_day_been_in_all_rooms(next_visit: Vec<i32>) -> i32 {
    
        let mut cache = HashMap::new();
        cache.insert((0, true), 0);
        cache.insert((0, false), 1);
        Solution::dp(&next_visit, next_visit.len() - 1, true, &mut cache) as i32
    }
}
原网站

版权声明
本文为[wangjun861205]所创,转载请带上原文链接,感谢
https://blog.csdn.net/wangjun861205/article/details/125583154