当前位置:网站首页>Loop filtering based on Unet
Loop filtering based on Unet
2022-07-01 03:59:00 【Dillon2015】
This article is from Dahua in JVET Proposals of the working group JVET-Y0086《A Unet-Based Deep In-Loop Filter》
brief introduction
because DNN The effect is remarkable in image denoising and detail restoration , If the loop filter used in video coding can better reconstruct the image and improve the coding efficiency . The proposal is based on HDRUnet Loop filtering technology , among HDRUnet It's based on Unet Network of .
Network structure
chart 1 Network structure
chart 1 It's a network structure , For the brightness component, the network input size is 160x160, stay CTU Size 128x128 The foundation is filled outward in each direction 16 Pixel , At the same time, the corresponding chrominance block is sampled to 160x160 As input .
When dealing with chromaticity , The network input size is 80x80, In chromaticity CTU Size 64x64 The foundation is filled outward in each direction 8 Pixel , At the same time, the corresponding brightness block is sampled to 80x80 As input .
Brightness and chroma train different models respectively , The two chrominance components share a set of model parameters .
The model is applied to loop filtering SAO after ,ALF Before . And in SPS Control the opening of the tool through the flag bit , At the same time, the frame level has flag bits to indicate whether the luminance and chrominance components are enabled .
Training and deriving information
For different QP={22,27,32,37,42} Training models separately , So brightness and chroma have their own 5 A model . Model training uses PyTorch frame , And use Libtorch Integrated into the VTM11.0_NNVC.
Model training information is shown in table 1,
Model derivation information is shown in table 2,
experimental result
stay VTM11.0_NNVC On AI Under configuration , The method Y、U、V Of BD-Rate Respectively -6.08%、 -20.34%、 -21.13%
Interested parties, please pay attention to WeChat official account Video Coding
边栏推荐
- LeetCode 1828. Count the number of points in a circle
- [TA frost wolf \u may- hundred people plan] 2.3 introduction to common functions
- [ta - Frost Wolf May - 100 people plan] 2.3 Introduction aux fonctions communes
- Jeecgboot output log, how to use @slf4j
- [TA frost wolf \u may - "hundred people plan"] 2.1 color space
- NFT:使用 EIP-2981 开启 NFT 版税之旅
- [TA frost wolf _may - "hundred people plan"] 1.4 introduction to PC mobile phone graphics API
- Blueprism registration, download and install -rpa Chapter 1
- Deep learning | rnn/lstm of naturallanguageprocessing
- 浏览器顶部loading(来自知乎)
猜你喜欢
Volley parsing data shows networking failure
【TA-霜狼_may-《百人计划》】2.2 模型与材质空间
使用selenium自动化测试工具爬取高考相关院校专业招生分数线及排名情况
【TA-霜狼_may-《百人計劃》】2.3 常用函數介紹
Use of JMeter counters
【历史上的今天】6 月 30 日:冯·诺依曼发表第一份草案;九十年代末的半导体大战;CBS 收购 CNET
Web components series (VIII) -- custom component style settings
Go learning --- unit test subtest
JMeter login failure, extracting login token, and obtaining token problem solving
TS type gymnastics: illustrating a complex advanced type
随机推荐
205. isomorphic string
[EI conference] the Third International Conference on nanomaterials and nanotechnology in 2022 (nanomt 2022)
【EI会议】2022年第三届纳米材料与纳米技术国际会议(NanoMT 2022)
How keil displays Chinese annotations (simple with pictures)
不同性能测试工具的并发模式
165. 比较版本号
【快捷键】
熊市下的Coinbase:亏损、裁员、股价暴跌
Unexpected token o in JSON at position 1, JSON parsing problem
242. valid Letter heteronyms
409. longest palindrome
8. string conversion integer (ATOI)
【TA-霜狼_may-《百人计划》】2.2 模型与材质空间
【TA-霜狼_may-《百人计划》】2.1 色彩空间
【人话版】WEB3黑暗森林中的隐私博弈
【TA-霜狼_may-《百人计划》】1.2.3 MVP矩阵运算
Idea plug-in backup table
171. excel table column No
Appium automation test foundation -- supplement: c/s architecture and b/s architecture description
[ta - Frost Wolf May - 100 people plan] 1.2.1 base vectorielle