当前位置:网站首页>多层LSTM

多层LSTM

2022-08-04 05:29:00 TigerZ*

我们扩展了单层 RNN,使它们具有两层。对于原始的单层版本,请参阅上一章简介中的绘图。左侧架构说明了使用多层 RNN 预测输出序列中的一个输出的方法。正确的架构显示了使用多层 RNN 预测输出序列的方法,该输出序列使用输出作为输入。
比如下面的例子
以上是按时间展开的堆叠循环神经网络。一般的,我们定义 ht(l)为在时刻 t 时第 l 层的隐状态,则它是由时刻t-1第l层的隐状态与时刻t第l-1层的隐状态共同决定:
其中U(l)、W(l)是权重矩阵,b(l)是偏置,ht(0) = x
我们可以看到,如果一共有T步,那么会有T个输出:y1,y2,...,yT。但一般只取最后一个输出yT,相应的隐状态也取最后时刻最后一个循环层的隐状态,比如上面就是取hT(3),这是代码中需要注意的地方。
参考链接:
原网站

版权声明
本文为[TigerZ*]所创,转载请带上原文链接,感谢
https://blog.csdn.net/u012863603/article/details/118407698