当前位置:网站首页>周志华机器学习
周志华机器学习
2022-08-04 05:29:00 【视觉菜鸟Leonardo】
1.
真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系:
查全率: 真实正例被预测为正例的比例
真正例率: 真实正例被预测为正例的比例
显然查全率与真正例率是相等的。
查准率:预测为正例的实例中真实正例的比例
假正例率: 真实反例被预测为正例的比例
2.损失函数其实就是算罚分,模型预测质量越差,罚分越多。
边栏推荐
猜你喜欢
[Deep Learning 21-Day Learning Challenge] 3. Use a self-made dataset - Convolutional Neural Network (CNN) Weather Recognition
flink onTimer定时器实现定时需求
(十四)平衡二叉树
sklearn中的pipeline机制
flink on yarn指定第三方jar包
Polynomial Regression (PolynomialFeatures)
win云服务器搭建个人博客失败记录(wordpress,wamp)
TensorFlow2 study notes: 4. The first neural network model, iris classification
Data reading in yolov3 (1)
[CV-Learning] Semantic Segmentation
随机推荐
TensorFlow2 study notes: 7. Optimizer
flink-sql自定义函数
Install dlib step pit record, error: WARNING: pip is configured with locations that require TLS/SSL
Attention Is All You Need(Transformer)
postgres 递归查询
Briefly say Q-Q map; stats.probplot (QQ map)
SQL的性能分析、优化
[Deep Learning 21 Days Learning Challenge] Memo: What does our neural network model look like? - detailed explanation of model.summary()
Dictionary feature extraction, text feature extraction.
flink-sql所有语法详解
TensorFlow2 study notes: 5. Common activation functions
WARNING: sql version 9.2, server version 11.0. Some psql features might not work.
flink sql left join数据倾斜问题解决
TensorFlow2学习笔记:8、tf.keras实现线性回归,Income数据集:受教育年限与收入数据集
多项式回归(PolynomialFeatures)
flink-sql所有数据类型
flink onTimer定时器实现定时需求
剑指 Offer 2022/7/5
Kubernetes基本入门-集群资源(二)
Androd Day02