当前位置:网站首页>[combinatorial mathematics] binomial theorem and combinatorial identity (binomial theorem | three combinatorial identities | recursive formula 1 | recursive formula 2 | recursive formula 3 Pascal / Ya
[combinatorial mathematics] binomial theorem and combinatorial identity (binomial theorem | three combinatorial identities | recursive formula 1 | recursive formula 2 | recursive formula 3 Pascal / Ya
2022-07-03 15:20:00 【Programmer community】
List of articles
- One 、 binomial theorem
- Two 、 Combinatorial identity ( recursion 1 )
- 3、 ... and 、 Combinatorial identity ( recursion 2 )
- Four 、 Combinatorial identity ( recursion 3 ) Pascal / Yang Hui's trigonometric formula
- 5、 ... and 、 Combination analysis method
- 6、 ... and 、 Characteristics of recursive combinatorial identities
One 、 binomial theorem
binomial theorem :
n
n
n It's a positive integer. , For everything
x
x
x and
y
y
y , There are the following theorems :
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
(
n
k
)
\dbinom{n}{k}
(kn) Express
n
n
n Yuan centralized retrieval
k
k
k Number of combinations of elements , yes Number of sets
C
(
n
,
k
)
C(n,k)
C(n,k) Another way of writing ;
Another common form (
y
=
1
y = 1
y=1 ) :
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
(1 + x)^n = \sum_{k=0}^n \dbinom{n}{k}x^k
(1+x)n=k=0∑n(kn)xk
Basic summation formula (
x
=
y
=
1
x = y =1
x=y=1 ) :
2
n
=
∑
k
=
0
n
(
n
k
)
2^n = \sum_{k=0}^n \dbinom{n}{k}
2n=k=0∑n(kn)
Two 、 Combinatorial identity ( recursion 1 )
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)
Combination analysis method :
(
n
k
)
\dbinom{n}{k}
(kn) Is to seek
k
k
k Subset selection method ,
(
n
n
−
k
)
\dbinom{n}{n-k}
(n−kn) Is to seek
n
−
k
n-k
n−k Selection method of subset , There is a one-to-one correspondence between the two ;
In general ,
(
n
k
)
\dbinom{n}{k}
(kn) Next item of , Not more than half of the above ;
If appear
(
10
8
)
\dbinom{10}{8}
(810) , I can write this as
(
10
2
)
\dbinom{10}{2}
(210)
3、 ... and 、 Combinatorial identity ( recursion 2 )
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)
The formula of substituting the combinatorial number , You can get Equal sign
=
=
= The values on both sides are equal ;
This formula is used to eliminate the coefficient , Examples are as follows :
Calculation
∑
k
=
0
n
k
(
n
k
)
\sum\limits_{k=0}^n k\dbinom{n}{k}
k=0∑nk(kn) combined :
At this time, it needs to be eliminated
k
k
k coefficient ;
Use
n
k
(
n
−
1
k
−
1
)
\dfrac{n}{k} \dbinom{n - 1}{k - 1}
kn(k−1n−1) Instead of
(
n
k
)
\dbinom{n}{k}
(kn) , There is the following calculation process :
∑
k
=
0
n
k
(
n
k
)
=
∑
k
=
0
n
k
n
k
(
n
−
1
k
−
1
)
\begin{array}{lcl} \sum\limits_{k=0}^n k\dbinom{n}{k} = \sum\limits_{k=0}^n k \dfrac{n}{k} \dbinom{n - 1}{k - 1} \end{array}
k=0∑nk(kn)=k=0∑nkkn(k−1n−1)
You can add
k
k
k About , here
n
n
n It has nothing to do with summing variables , Now you can put
n
n
n Extract the addition symbol
∑
\sum
∑ outside ,
∑
k
=
0
n
k
(
n
k
)
=
∑
k
=
0
n
k
n
k
(
n
−
1
k
−
1
)
=
n
∑
k
=
0
n
(
n
−
1
k
−
1
)
\begin{array}{lcl} \sum\limits_{k=0}^n k\dbinom{n}{k} &=& \sum\limits_{k=0}^n k \dfrac{n}{k} \dbinom{n - 1}{k - 1} \\\\ &=& n \sum\limits_{k=0}^n \dbinom{n - 1}{k - 1} \end{array}
k=0∑nk(kn)==k=0∑nkkn(k−1n−1)nk=0∑n(k−1n−1)
And then calculate
∑
k
=
0
n
(
n
−
1
k
−
1
)
\sum\limits_{k=0}^n \dbinom{n - 1}{k - 1}
k=0∑n(k−1n−1) ,
Binomial theorem is :
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
According to the binomial theorem , You can get
(
1
+
1
)
n
=
∑
k
=
0
n
(
n
k
)
(1 + 1)^{n} = \sum\limits_{k=0}^n \dbinom{n}{k}
(1+1)n=k=0∑n(kn)
deduction :
(
1
+
1
)
n
−
1
=
∑
k
=
0
n
−
1
(
n
−
1
k
−
1
)
=
2
n
−
1
(1 + 1)^{n-1} = \sum\limits_{k=0}^{n-1} \dbinom{n-1}{k-1} = 2^{n-1}
(1+1)n−1=k=0∑n−1(k−1n−1)=2n−1
Then you can continue the subsequent calculation ;
Four 、 Combinatorial identity ( recursion 3 ) Pascal / Yang Hui's trigonometric formula
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)
This recursion , Used to split items :
Can be
(
n
k
)
\dbinom{n}{k}
(kn) Split into
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn−1)+(k−1n−1) The sum of the ;
take
(
n
−
1
k
)
\dbinom{n - 1}{k}
(kn−1) Split into
(
n
k
)
−
(
n
−
1
k
−
1
)
\dbinom{n}{k} -\dbinom{n - 1}{k - 1}
(kn)−(k−1n−1) The difference between the ;
take take
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k - 1}
(k−1n−1) Split into
(
n
k
)
−
(
n
−
1
k
)
\dbinom{n}{k} -\dbinom{n - 1}{k}
(kn)−(kn−1) The difference between the ;
In a stack of summation combinatorial numbers , Split into the difference between two numbers , Can offset many combinations ;
It is often used for simplification in large sum formulas ;
The formula is proved by using the method of combinatorial analysis :
take
n
n
n Meta set selection
k
k
k A subset of , This is the number of set combinations ;
Specify one of the elements
a
a
a ;
① contain
a
a
a Elements :
k
k
k The subset contains
a
a
a The number of combinations of elements by
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k - 1}
(k−1n−1) ,
k
k
k The subset contains
a
a
a , Just divide
a
a
a Out of element , The rest
n
−
1
n-1
n−1 Of the elements , elect
k
−
1
k-1
k−1 Just one element ;
② It doesn't contain
a
a
a Elements :
k
k
k Subset does not contain
a
a
a The number of combinations of elements by
(
n
−
1
k
)
\dbinom{n - 1}{k}
(kn−1) ,
k
k
k Subset does not contain
a
a
a , Just divide
a
a
a Out of element , The rest
n
−
1
n-1
n−1 Of the elements , elect
k
k
k Just one element ;
5、 ... and 、 Combination analysis method
Prove with the above Pascal / Yang hui triangle Take the formula as an example
The combination analysis method uses : When using the combination analysis method to prove the combination number , Specify the set first , Specify elements , Specify two counting problems , On both sides of the formula are the counts of the same problem ;
- Specify the collection :
n
n
n Meta set
- Specify elements : A particular element
a
a
a
- Specify the counting problem :
- ① problem 1 :
n
n
n Meta set
k
k
k Combinatorial number ;
- ② problem 2 :
n
n
n Yuanji
k
k
k Combinatorial number , The combination contains elements
a
a
a , No elements
a
a
a Two combined counts of ;
- ① problem 1 :
6、 ... and 、 Characteristics of recursive combinatorial identities
Use A relatively small number of combinations Express Relatively large number of combinations , It is called recursive combinatorial identity ;
边栏推荐
- Construction of operation and maintenance system
- [Yu Yue education] scientific computing and MATLAB language reference materials of Central South University
- 在MapReduce中利用MultipleOutputs输出多个文件
- [daily training] 395 Longest substring with at least k repeated characters
- 运维体系的构建
- Visual host system design and development (Halcon WinForm)
- Qt常用语句备忘
- Kubernetes vous emmène du début à la fin
- Jvm-04-runtime data area heap, method area
- Influxdb2 sources add data sources
猜你喜欢

Final review points of human-computer interaction

北京共有产权房出租新规实施的租赁案例

Jvm-02-class loading subsystem

Visual upper system design and development (Halcon WinForm) -3 Image control

详解指针进阶1

Incluxdb2 buckets create database

Redis lock Optimization Practice issued by gaobingfa
![[transform] [NLP] first proposed transformer. The 2017 paper](/img/33/f639ab527d5adedfdc39f8d8117c3e.png)
[transform] [NLP] first proposed transformer. The 2017 paper "attention is all you need" by Google brain team

Popular understanding of linear regression (I)

Influxdb2 sources add data sources
随机推荐
第04章_逻辑架构
Matlab r2011b neural network toolbox precautions
Final review points of human-computer interaction
【可能是全中文网最全】pushgateway入门笔记
Incluxdb2 buckets create database
Use of Tex editor
Global and Chinese market of iron free motors 2022-2028: Research Report on technology, participants, trends, market size and share
Qt常用语句备忘
Leetcode the smallest number of the rotation array of the offer of the sword (11)
Visual host system design and development (Halcon WinForm)
Jvm-08-garbage collector
[daily training] 395 Longest substring with at least k repeated characters
[pytorch learning notes] transforms
Halcon and WinForm study section 2
[probably the most complete in Chinese] pushgateway entry notes
什么是Label encoding?one-hot encoding ,label encoding两种编码该如何区分和使用?
Didi off the shelf! Data security is national security
el-switch 赋值后状态不变化
详解指针进阶1
Popular understanding of linear regression (I)