当前位置:网站首页>[combinatorial mathematics] binomial theorem and combinatorial identity (binomial theorem | three combinatorial identities | recursive formula 1 | recursive formula 2 | recursive formula 3 Pascal / Ya
[combinatorial mathematics] binomial theorem and combinatorial identity (binomial theorem | three combinatorial identities | recursive formula 1 | recursive formula 2 | recursive formula 3 Pascal / Ya
2022-07-03 15:20:00 【Programmer community】
List of articles
- One 、 binomial theorem
- Two 、 Combinatorial identity ( recursion 1 )
- 3、 ... and 、 Combinatorial identity ( recursion 2 )
- Four 、 Combinatorial identity ( recursion 3 ) Pascal / Yang Hui's trigonometric formula
- 5、 ... and 、 Combination analysis method
- 6、 ... and 、 Characteristics of recursive combinatorial identities
One 、 binomial theorem
binomial theorem :
n
n
n It's a positive integer. , For everything
x
x
x and
y
y
y , There are the following theorems :
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
(
n
k
)
\dbinom{n}{k}
(kn) Express
n
n
n Yuan centralized retrieval
k
k
k Number of combinations of elements , yes Number of sets
C
(
n
,
k
)
C(n,k)
C(n,k) Another way of writing ;
Another common form (
y
=
1
y = 1
y=1 ) :
(
1
+
x
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
(1 + x)^n = \sum_{k=0}^n \dbinom{n}{k}x^k
(1+x)n=k=0∑n(kn)xk
Basic summation formula (
x
=
y
=
1
x = y =1
x=y=1 ) :
2
n
=
∑
k
=
0
n
(
n
k
)
2^n = \sum_{k=0}^n \dbinom{n}{k}
2n=k=0∑n(kn)
Two 、 Combinatorial identity ( recursion 1 )
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)
Combination analysis method :
(
n
k
)
\dbinom{n}{k}
(kn) Is to seek
k
k
k Subset selection method ,
(
n
n
−
k
)
\dbinom{n}{n-k}
(n−kn) Is to seek
n
−
k
n-k
n−k Selection method of subset , There is a one-to-one correspondence between the two ;
In general ,
(
n
k
)
\dbinom{n}{k}
(kn) Next item of , Not more than half of the above ;
If appear
(
10
8
)
\dbinom{10}{8}
(810) , I can write this as
(
10
2
)
\dbinom{10}{2}
(210)
3、 ... and 、 Combinatorial identity ( recursion 2 )
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)
The formula of substituting the combinatorial number , You can get Equal sign
=
=
= The values on both sides are equal ;
This formula is used to eliminate the coefficient , Examples are as follows :
Calculation
∑
k
=
0
n
k
(
n
k
)
\sum\limits_{k=0}^n k\dbinom{n}{k}
k=0∑nk(kn) combined :
At this time, it needs to be eliminated
k
k
k coefficient ;
Use
n
k
(
n
−
1
k
−
1
)
\dfrac{n}{k} \dbinom{n - 1}{k - 1}
kn(k−1n−1) Instead of
(
n
k
)
\dbinom{n}{k}
(kn) , There is the following calculation process :
∑
k
=
0
n
k
(
n
k
)
=
∑
k
=
0
n
k
n
k
(
n
−
1
k
−
1
)
\begin{array}{lcl} \sum\limits_{k=0}^n k\dbinom{n}{k} = \sum\limits_{k=0}^n k \dfrac{n}{k} \dbinom{n - 1}{k - 1} \end{array}
k=0∑nk(kn)=k=0∑nkkn(k−1n−1)
You can add
k
k
k About , here
n
n
n It has nothing to do with summing variables , Now you can put
n
n
n Extract the addition symbol
∑
\sum
∑ outside ,
∑
k
=
0
n
k
(
n
k
)
=
∑
k
=
0
n
k
n
k
(
n
−
1
k
−
1
)
=
n
∑
k
=
0
n
(
n
−
1
k
−
1
)
\begin{array}{lcl} \sum\limits_{k=0}^n k\dbinom{n}{k} &=& \sum\limits_{k=0}^n k \dfrac{n}{k} \dbinom{n - 1}{k - 1} \\\\ &=& n \sum\limits_{k=0}^n \dbinom{n - 1}{k - 1} \end{array}
k=0∑nk(kn)==k=0∑nkkn(k−1n−1)nk=0∑n(k−1n−1)
And then calculate
∑
k
=
0
n
(
n
−
1
k
−
1
)
\sum\limits_{k=0}^n \dbinom{n - 1}{k - 1}
k=0∑n(k−1n−1) ,
Binomial theorem is :
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
According to the binomial theorem , You can get
(
1
+
1
)
n
=
∑
k
=
0
n
(
n
k
)
(1 + 1)^{n} = \sum\limits_{k=0}^n \dbinom{n}{k}
(1+1)n=k=0∑n(kn)
deduction :
(
1
+
1
)
n
−
1
=
∑
k
=
0
n
−
1
(
n
−
1
k
−
1
)
=
2
n
−
1
(1 + 1)^{n-1} = \sum\limits_{k=0}^{n-1} \dbinom{n-1}{k-1} = 2^{n-1}
(1+1)n−1=k=0∑n−1(k−1n−1)=2n−1
Then you can continue the subsequent calculation ;
Four 、 Combinatorial identity ( recursion 3 ) Pascal / Yang Hui's trigonometric formula
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)
This recursion , Used to split items :
Can be
(
n
k
)
\dbinom{n}{k}
(kn) Split into
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn−1)+(k−1n−1) The sum of the ;
take
(
n
−
1
k
)
\dbinom{n - 1}{k}
(kn−1) Split into
(
n
k
)
−
(
n
−
1
k
−
1
)
\dbinom{n}{k} -\dbinom{n - 1}{k - 1}
(kn)−(k−1n−1) The difference between the ;
take take
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k - 1}
(k−1n−1) Split into
(
n
k
)
−
(
n
−
1
k
)
\dbinom{n}{k} -\dbinom{n - 1}{k}
(kn)−(kn−1) The difference between the ;
In a stack of summation combinatorial numbers , Split into the difference between two numbers , Can offset many combinations ;
It is often used for simplification in large sum formulas ;
The formula is proved by using the method of combinatorial analysis :
take
n
n
n Meta set selection
k
k
k A subset of , This is the number of set combinations ;
Specify one of the elements
a
a
a ;
① contain
a
a
a Elements :
k
k
k The subset contains
a
a
a The number of combinations of elements by
(
n
−
1
k
−
1
)
\dbinom{n - 1}{k - 1}
(k−1n−1) ,
k
k
k The subset contains
a
a
a , Just divide
a
a
a Out of element , The rest
n
−
1
n-1
n−1 Of the elements , elect
k
−
1
k-1
k−1 Just one element ;
② It doesn't contain
a
a
a Elements :
k
k
k Subset does not contain
a
a
a The number of combinations of elements by
(
n
−
1
k
)
\dbinom{n - 1}{k}
(kn−1) ,
k
k
k Subset does not contain
a
a
a , Just divide
a
a
a Out of element , The rest
n
−
1
n-1
n−1 Of the elements , elect
k
k
k Just one element ;
5、 ... and 、 Combination analysis method
Prove with the above Pascal / Yang hui triangle Take the formula as an example
The combination analysis method uses : When using the combination analysis method to prove the combination number , Specify the set first , Specify elements , Specify two counting problems , On both sides of the formula are the counts of the same problem ;
- Specify the collection :
n
n
n Meta set
- Specify elements : A particular element
a
a
a
- Specify the counting problem :
- ① problem 1 :
n
n
n Meta set
k
k
k Combinatorial number ;
- ② problem 2 :
n
n
n Yuanji
k
k
k Combinatorial number , The combination contains elements
a
a
a , No elements
a
a
a Two combined counts of ;
- ① problem 1 :
6、 ... and 、 Characteristics of recursive combinatorial identities
Use A relatively small number of combinations Express Relatively large number of combinations , It is called recursive combinatorial identity ;
边栏推荐
- [set theory] inclusion exclusion principle (complex example)
- Using TCL (tool command language) to manage Tornado (for VxWorks) can start the project
- Apache ant extension tutorial
- Jvm-08-garbage collector
- Neon global and Chinese markets 2022-2028: Research Report on technology, participants, trends, market size and share
- Popular understanding of decision tree ID3
- Leasing cases of the implementation of the new regulations on the rental of jointly owned houses in Beijing
- Enable multi-threaded download of chrome and edge browsers
- Introduction to redis master-slave, sentinel and cluster mode
- 求字符串函数和长度不受限制的字符串函数的详解
猜你喜欢
随机推荐
Concurrency-02-visibility, atomicity, orderliness, volatile, CAS, atomic class, unsafe
redis单线程问题强制梳理门外汉扫盲
Apache ant extension tutorial
Kubernetes 进阶训练营 Pod基础
【Transform】【NLP】首次提出Transformer,Google Brain团队2017年论文《Attention is all you need》
视觉上位系统设计开发(halcon-winform)-3.图像控件
Redis lock Optimization Practice issued by gaobingfa
如何使用 @NotNull等注解校验 并全局异常处理
App全局异常捕获
[probably the most complete in Chinese] pushgateway entry notes
What is one hot encoding? In pytoch, there are two ways to turn label into one hot coding
视觉上位系统设计开发(halcon-winform)-1.流程节点设计
北京共有产权房出租新规实施的租赁案例
Global and Chinese markets for sterile packaging 2022-2028: Research Report on technology, participants, trends, market size and share
Markdown file titles are all reduced by one level
阿特拉斯atlas扭矩枪 USB通讯教程基于MTCOM
Center and drag linked global and Chinese markets 2022-2028: Research Report on technology, participants, trends, market size and share
Puppet自动化运维排错案例
socket.io搭建分布式Web推送服务器
Puppet automatic operation and maintenance troubleshooting cases