当前位置:网站首页>[factorial inverse], [linear inverse], [combinatorial counting] Niu Mei's mathematical problems

[factorial inverse], [linear inverse], [combinatorial counting] Niu Mei's mathematical problems

2022-07-06 07:39:00 Code chess

️ Pre knowledge ️

1️⃣ Introduction to inverse element

a × b ≡ 1 ( m o d    p ) a \times b \equiv 1 ( mod\,\,p) a×b1(modp), It can be said that a yes b In the mold p Inverse element in case .
In fact, the inverse element can be regarded as the reciprocal

2️⃣ Factorial inverse

Mode one :
Find the inverse element through Fermat's theorem :
When p As a prime number , also gcd(a,p)=1 when , We have a p − 1 ≡ 1 ( m o d   p ) a^{p−1}≡1(mod\ p) ap11(mod p). Then there is a p − 2 × a ≡ 1 ( m o d   p ) a^{p−2}×a≡1(mod\ p) ap2×a1(mod p), be a The inverse of is a p − 2 a^{p−2} ap2
below ksm The function is a fast power

fact[0] = 1;
for(int i = 1; i < N; i++)
{
    
	fact[i] = fact[i - 1] * i % mod;
	inv[i] = ksm(fact[i], mod - 2);
}

Mode two :

Pass formula 1 ( n + 1 ) ! × ( n + 1 ) = 1 n ! \frac{1}{(n+1)!}\times (n+1)=\frac{1}{n!} (n+1)!1×(n+1)=n!1 The inverse element of factorial is deduced from the approximate linearity

1 ( n + 1 ) ! \frac{1}{(n+1)!} (n+1)!1 In fact, it can be seen as ( n + 1 ) ! {(n+1)!} (n+1)! Inverse element

for(int i = 1; i <= n; i++)
	fact[i] = fact[i - 1] * i % mod;
inv[n] = ksm(fact[n], mod - 2);
for(int i = n - 1; i >= 1; i--)
	inv[i] = inv[i + 1] * (i + 1) % mod;

3️⃣ Linear inverse element

seek [ 1 , N − 1 ] [1,N-1] [1,N1] About mod Inverse element time of , It can be done in O ( N ) O(N) O(N) Solve in time

Let the modulus be p
For the present i, set up p = k × i + r p=k×i+r p=k×i+r, be

k × i + r ≡ 0    ( m o d    p ) k × i × ( i − 1 × r − 1 ) + r × ( i − 1 × r − 1 ) ≡ 0    ( m o d    p ) k × r − 1 + i − 1 ≡ 0    ( m o d    p ) i − 1 ≡ − k × r − 1    ( m o d    p ) i − 1 ≡ − ⌊ p i ⌋ × r − 1    ( m o d    p ) \begin{aligned} k \times i + r & \equiv 0 &\,\,(mod \,\, p) \\ k \times i \times ( i^{-1} \times r ^{-1}) + r \times (i^{-1} \times r^{-1}) &\equiv 0 &\,\,( mod \,\, p) \\ k \times r^{-1} + i ^ {-1} & \equiv 0 &\,\, (mod \,\, p)\\ i^{-1} & \equiv -k \times r^{-1} &\,\, (mod \,\, p) \\ i^{-1} & \equiv - \left \lfloor \frac{p}{i}\right \rfloor \times r^{-1} &\,\,(mod\,\,p) \end{aligned} k×i+rk×i×(i1×r1)+r×(i1×r1)k×r1+i1i1i1000k×r1ip×r1(modp)(modp)(modp)(modp)(modp)
Be careful :
i n v [ 1 ] inv[1] inv[1] Be sure to initialize to 1, Need from 2 Start tweeting , Cannot from 1 Start tweeting

inv[0] = inv[1] = 1;
for(int i = 2; i < N; i++)
	inv[i] = inv[mod % i] * (mod - mod / i) % mod;

At the same time, we can find Factorial inverse
Just multiply the inverse element in a form similar to factorial , Obtained inv[i] That is to say i ! i! i! Inverse element

for(int i = 2; i < N; i++)
	inv[i] = inv[i - 1] * inv[i] % mod;

4️⃣ Combination number calculation

C n m C_n^m Cnm Calculation
️ Mode one : Formula calculation
Calculations are based on inverse elements or factorials
C n m = n ! m ! ∗ ( n − m ) ! C_n^m = \frac{n!}{m!*(n-m)!} Cnm=m!(nm)!n!

ll C(ll n, ll m)
{
    
	if(n < m) return 0;
	return fact[n] * inv[m] % mod * inv[n - m] % mod;
}

️ Mode two : Recursive method
Table creation required , Therefore, if the calculation range is relatively large, the space required is also large
The recursive formula : C n m = C n − 1 m + C n − 1 m − 1 C_n^m = C_{n-1}^{m} + C_{n-1}^{m-1} Cnm=Cn1m+Cn1m1

for(int i = 1; i <= n; i++)
	for(int j = 0; j <= i; j++)
	{
    
		if(i == j || j == 0) c[i][j] = 1;
		else c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
	}

5️⃣ subject

link :
https://ac.nowcoder.com/acm/contest/23481/J
 Insert picture description here
 Insert picture description here

Is to select k Multiply values , Finally, add the results


Because there are only three cases of the number size in the array . So you can cut the entrance according to this .

First 0 0 0 You don't have to think about , Next, consider n n n individual 1 1 1 and m m m individual 2 2 2, If the sum above 1 1 1 There is i i i individual , that 2 2 2 There needs to be k − i k-i ki individual , So the answer is ∑ i = 0 k C ( n , i ) ∗ C ( m , k − i ) ∗ 2 k − i \sum_{i=0}^kC(n,i)*C(m,k-i)*2^{k-i} i=0kC(n,i)C(m,ki)2ki


Pay attention to various initializations in the code
Initialization in linear inverse :inv[1] = 1
fac[i]: 2 i 2^i 2i
fact[i]: i ! i! i!

#include<bits/stdc++.h>
using namespace std;

using ll = long long;
const int N = 1e7 + 5, mod = 998244353;

ll fac[N], fact[N], inv[N];

ll C(ll n, ll m)
{
    
	if(n < m) return 0;
	return fact[n] * inv[m] % mod * inv[n - m] % mod;
}

void solve()
{
    
	fac[1] = 2;
	fac[0] = fact[0] = fact[1] = inv[0] = inv[1] = 1;
	for(int i = 2; i < N; i++)
	{
    
		fac[i] = fac[i - 1] * 2 % mod;
		fact[i] = fact[i - 1] * i % mod;
		inv[i] = inv[mod % i] * (mod - mod / i) % mod; 
	}
	for(int i = 2; i < N; i++)
		inv[i] = inv[i - 1] * inv[i] % mod;
		
	int n, k;
	cin >> n >> k;
	vector<int> a(n);
	int o = 0, t = 0;
	
	for(int i = 0; i < n; i++) 
	{
    
		cin >> a[i];
		if(a[i] == 1) o ++;
		else if(a[i] == 2) t ++;
	}	
	ll res = 0;
	for(int i = 0; i <= k; i++)
	{
    
		res += C(o, i) * C(t, k - i) % mod * fac[k - i] % mod;
		res %= mod;
	}
	cout << res << "\n";
}
int main()
{
    
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	
	int t;
// cin >> t;
	t = 1;
	while(t--) solve();
	return 0;
}

原网站

版权声明
本文为[Code chess]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202131908419623.html