当前位置:网站首页>Mathematics in machine learning -- point estimation (I): basic knowledge
Mathematics in machine learning -- point estimation (I): basic knowledge
2022-07-02 09:19:00 【von Neumann】
Set the overall X X X The distribution form of is known , But one or more of its parameters is unknown , With the help of The overall X X X The problem of estimating the total unknown parameter value from a sample of is called the point estimation of the parameter . Set the overall X ∼ f ( x ; θ ) X\sim f(x;\theta) X∼f(x;θ), among f f f The form of is known , θ \theta θ It's an unknown parameter . for example , The overall X ∼ B ( 1 , p ) X\sim B(1, p) X∼B(1,p), among p p p Unknown , This p p p This is the unknown parameter of the marker population distribution , Short for overall parameters . Although the overall parameters are unknown , But the range of its possible values is known . The value range of the overall parameters is called the parameter space , Write it down as Θ \Theta Θ. for example , Known population X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) X∼N(μ,σ2), among μ \mu μ and σ 2 \sigma^2 σ2 It's all unknown , Parameter space Θ = ( μ , σ 2 ) : − ∞ < μ < ∞ , σ 2 > 0 \Theta={(\mu, \sigma^2):-\infty<\mu<\infty, \sigma^2>0} Θ=(μ,σ2):−∞<μ<∞,σ2>0.
set up ( x 1 , x 2 , ⋯ , x n ) (x_1, x_2, \cdots, x_n) (x1,x2,⋯,xn) It's taken from the whole X X X A sample of , If a statistic is used θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) \hat{\theta}=\hat{\theta}(x_1, x_2, \cdots, x_n) θ^=θ^(x1,x2,⋯,xn) To estimate θ \theta θ, said θ ^ \hat{\theta} θ^ Is the parameter θ \theta θ A point estimator of . θ ^ \hat{\theta} θ^ Is the parameter θ \theta θ An estimate of , Then there are g ( θ ^ ) g(\hat{\theta}) g(θ^) Is the parameter g ( θ ) g(\theta) g(θ) An estimate of . ad locum , Construct Statistics θ ^ \hat{\theta} θ^ Commonly used methods are moment estimation 、 Maximum likelihood estimation and maximum a posteriori estimation .
边栏推荐
- C language - Blue Bridge Cup - 7 segment code
- Ora-12514 problem solving method
- Gocv split color channel
- 长篇总结(代码有注释)数构(C语言)——第四章、串(上)
- Shengshihaotong and Guoao (Shenzhen) new energy Co., Ltd. build the charging pile industry chain
- 微服务实战|Eureka注册中心及集群搭建
- Number structure (C language) -- Chapter 4, compressed storage of matrices (Part 2)
- CSDN Q & A_ Evaluation
- 以字节跳动内部 Data Catalog 架构升级为例聊业务系统的性能优化
- 西瓜书--第六章.支持向量机(SVM)
猜你喜欢

微服务实战|Eureka注册中心及集群搭建

【Go实战基础】gin 如何绑定与使用 url 参数

队列管理器running状态下无法查看通道

【Go实战基础】gin 如何自定义和使用一个中间件

Function ‘ngram‘ is not defined

远程连接IBM MQ报错AMQ4036解决方法

【Go实战基础】gin 如何验证请求参数

A detailed explanation takes you to reproduce the statistical learning method again -- Chapter 2, perceptron model

十年开发经验的程序员告诉你,你还缺少哪些核心竞争力?

Microservice practice | teach you to develop load balancing components hand in hand
随机推荐
【Go实战基础】gin 如何设置路由
Select sort and insert sort
Matplotlib剑客行——布局指南与多图实现(更新)
Cloud computing in my eyes - PAAS (platform as a service)
Image transformation, transpose
Oracle modifies tablespace names and data files
Matplotlib剑客行——没有工具用代码也能画图的造型师
How to realize asynchronous programming in a synchronous way?
Break the cocoon | one article explains what is the real cloud primordial
Number structure (C language -- code with comments) -- Chapter 2, linear table (updated version)
hystrix 实现请求合并
2022/2/14 summary
Use of libusb
长篇总结(代码有注释)数构(C语言)——第四章、串(上)
Flink - use the streaming batch API to count the number of words
[go practical basis] how to bind and use URL parameters in gin
A detailed explanation takes you to reproduce the statistical learning method again -- Chapter 2, perceptron model
oracle修改数据库字符集
概率还不会的快看过来《统计学习方法》——第四章、朴素贝叶斯法
Data type case of machine learning -- using data to distinguish men and women based on Naive Bayesian method