当前位置:网站首页>Mathematics in machine learning -- point estimation (I): basic knowledge
Mathematics in machine learning -- point estimation (I): basic knowledge
2022-07-02 09:19:00 【von Neumann】
Set the overall X X X The distribution form of is known , But one or more of its parameters is unknown , With the help of The overall X X X The problem of estimating the total unknown parameter value from a sample of is called the point estimation of the parameter . Set the overall X ∼ f ( x ; θ ) X\sim f(x;\theta) X∼f(x;θ), among f f f The form of is known , θ \theta θ It's an unknown parameter . for example , The overall X ∼ B ( 1 , p ) X\sim B(1, p) X∼B(1,p), among p p p Unknown , This p p p This is the unknown parameter of the marker population distribution , Short for overall parameters . Although the overall parameters are unknown , But the range of its possible values is known . The value range of the overall parameters is called the parameter space , Write it down as Θ \Theta Θ. for example , Known population X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) X∼N(μ,σ2), among μ \mu μ and σ 2 \sigma^2 σ2 It's all unknown , Parameter space Θ = ( μ , σ 2 ) : − ∞ < μ < ∞ , σ 2 > 0 \Theta={(\mu, \sigma^2):-\infty<\mu<\infty, \sigma^2>0} Θ=(μ,σ2):−∞<μ<∞,σ2>0.
set up ( x 1 , x 2 , ⋯ , x n ) (x_1, x_2, \cdots, x_n) (x1,x2,⋯,xn) It's taken from the whole X X X A sample of , If a statistic is used θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) \hat{\theta}=\hat{\theta}(x_1, x_2, \cdots, x_n) θ^=θ^(x1,x2,⋯,xn) To estimate θ \theta θ, said θ ^ \hat{\theta} θ^ Is the parameter θ \theta θ A point estimator of . θ ^ \hat{\theta} θ^ Is the parameter θ \theta θ An estimate of , Then there are g ( θ ^ ) g(\hat{\theta}) g(θ^) Is the parameter g ( θ ) g(\theta) g(θ) An estimate of . ad locum , Construct Statistics θ ^ \hat{\theta} θ^ Commonly used methods are moment estimation 、 Maximum likelihood estimation and maximum a posteriori estimation .
边栏推荐
- QT -- how to set shadow effect in QWidget
- ORA-12514问题解决方法
- hystrix 实现请求合并
- Cartoon rendering - average normal stroke
- 盘点典型错误之TypeError: X() got multiple values for argument ‘Y‘
- 微服务实战|原生态实现服务的发现与调用
- Select sort and insert sort
- 京东面试官问:LEFT JOIN关联表中用ON还是WHERE跟条件有什么区别
- Chrome用户脚本管理器-Tampermonkey 油猴
- Solutions to Chinese garbled code in CMD window
猜你喜欢
There is a problem with MySQL installation (the service already exists)
知识点很细(代码有注释)数构(C语言)——第三章、栈和队列
Statistical learning methods - Chapter 5, decision tree model and learning (Part 1)
Cloud computing in my eyes - PAAS (platform as a service)
Chrome browser plug-in fatkun installation and introduction
远程连接IBM MQ报错AMQ4036解决方法
Insight into cloud native | microservices and microservice architecture
win10使用docker拉取redis镜像报错read-only file system: unknown
hystrix 实现请求合并
WSL installation, beautification, network agent and remote development
随机推荐
Gocv boundary fill
Don't spend money, spend an hour to build your own blog website
Pyspark de duplication dropduplicates, distinct; withColumn、lit、col; unionByName、groupBy
oracle删除表空间及用户
Complete solution of servlet: inheritance relationship, life cycle, container, request forwarding and redirection, etc
QT -- how to set shadow effect in QWidget
Machine learning practice: is Mermaid a love movie or an action movie? KNN announces the answer
洞见云原生|微服务及微服务架构浅析
Solutions to Chinese garbled code in CMD window
DTM distributed transaction manager PHP collaboration client V0.1 beta release!!!
Avoid breaking changes caused by modifying constructor input parameters
双非本科生进大厂,而我还在底层默默地爬树(上)
Jd.com interviewer asked: what is the difference between using on or where in the left join association table and conditions
Webflux responsive programming
Matplotlib剑客行——布局指南与多图实现(更新)
别找了,Chrome浏览器必装插件都在这了
京东面试官问:LEFT JOIN关联表中用ON还是WHERE跟条件有什么区别
Double non undergraduate students enter the factory, while I am still quietly climbing trees at the bottom (Part 1)
There is a problem with MySQL installation (the service already exists)
Matplotlib swordsman Tour - an artist tutorial to accommodate all rivers