当前位置:网站首页>11. Container With Most Water

11. Container With Most Water

2022-08-03 16:39:00 51CTO


Given n non-negative integers a1, a2, …, an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

11. Container With Most Water_i++


The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example:

      
      
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
  • 1.
  • 2.
      
      
public class Solution {
public int maxArea(int[] height) {
int lpoint = 0, rpoint = height.length - 1;
int area = 0;
while (lpoint < rpoint) {
area = Math.max(area, Math.min(height[lpoint], height[rpoint]) * (rpoint - lpoint));
if (height[lpoint] > height[rpoint])
rpoint--;
else
lpoint++;
}
return area;
}
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.

Java

      
      
class Solution {
public int maxArea(int[] height) {
int l = 0;
int r = height.length - 1; // idx values left and right
int le = height[l];
int re = height[r]; // element value for left and right
int thisLe = 0;
int thisRe = 0; // for comparisons with previous elements
int max = Math.min(le, re) * (r - l); // initial max area
while(l < r) {
le = height[l]; // left elemnt
re = height[r]; // right element
if (le < re) {
thisLe = le; // for comparing it with next elements
// find next elemnt towards right that is greater than this left element
while (l < r && thisLe >= height[l]) l++;
// finf max area
max = Math.max(max, Math.min(height[l], height[r]) * (r - l));
} else if (le > re) {
thisRe = re; // for comparing it with next elements
// find next elemnt towards left that is greater than this right element
while(l < r && thisRe >= height[r]) r--;
// find area
max = Math.max(max, Math.min(height[l], height[r]) * (r - l));
} else {
// if both elements are same
// calc area for them
// and consider for elements towards each other
max = Math.max(max, Math.min(height[l], height[r]) * (r - l));
l++;
r--;
// find max area for this new elements
max = Math.max(max, Math.min(height[l], height[r]) * (r - l));
}
}
return max;
}
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
      
      
class Solution:
def maxArea(self, height: List[int]) -> int:
i = 0
j = len(height) - 1
max_area = 0

while i < j:
m = height[i] if height[i] < height[j] else height[j]
m = m * (j-i)
max_area = max_area if max_area > m else m
if height[j] > height[i]: i+=1
else: j-=1

return max_area
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
      
      
class Solution {
public:
int maxArea(vector<int>& height) {
int i = 0;
int j = height.size() - 1;
int max = -1;
int area = 0;
int h = 0;
while (i < j) {
if (height[i] < height[j])
h = height[i];
else
h = height[j];

area = (j - i) * h;

if (max < area)
max = area;

if (height[i] < height[j])
i++;
else
j--;
}
return max;
}
};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.


原网站

版权声明
本文为[51CTO]所创,转载请带上原文链接,感谢
https://blog.51cto.com/u_15740726/5540627