当前位置:网站首页>BiSeNet的特点

BiSeNet的特点

2022-07-07 05:19:00 我是一个小稻米

BiSeNet特点:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JwExNVUs-1657071532229)(C:\Users\HP\AppData\Roaming\Typora\typora-user-images\image-20220704104230531.png)]

1. 双分支网络

一个网络强调细节,它的特征图最小是小到1/8的尺寸,也就是说尽量保持了比较多的特征图细节;

第二个就是轻量化,他只用三个卷积层,就实现了

第三个是高级语义特征的支路(context path),强调比较深的深度,最深可以达到1:32的下采样,

第四个是轻量级模型,使用inception来实现,在保持比较深的深度同时。仍然保持比较小的计算量,通过全局平均池化,实现上下文信息的捕获,主要思路就是简单轻量骨干网络

第五就是特征融合,两个分支的特征图空间是不同的,特征差异会比较大,融合时就会导致很多噪声点,因此它使用批量正态化,减少特征表示之间的差异,使用注意力机制加权融合,来强调高级语义特征

2. 特征融合模块

首先进行了一个通道上的堆叠,也就是串联,然后通道堆叠后使用了一个普通卷积进行处理,之后使用了一个类似注意力的机制,最后是一个短接

3. 损失函数

使用主损失函数监督整个网络,使用辅助损失函数监督右侧比较深的网络,主要目的是加快训练进度

使用BiSeNet实现自己的语义分割

原网站

版权声明
本文为[我是一个小稻米]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_44669966/article/details/125633180