当前位置:网站首页>高斯推断推导
高斯推断推导
2022-08-03 23:58:00 【威士忌燕麦拿铁】
设有一对服从多元正态分布的变量 ( x , y ) (\boldsymbol{x}, \boldsymbol{y}) (x,y),可以写出他们的联合概率密度函数:
p ( x , y ) = N ( [ μ x μ y ] , [ Σ x x Σ x y Σ y x Σ y y ] ) p(\boldsymbol{x}, \boldsymbol{y})=\mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right],\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\right) p(x,y)=N([μxμy],[ΣxxΣyxΣxyΣyy])
其中, Σ y x = Σ x y T \boldsymbol{\Sigma}_{y x}=\boldsymbol{\Sigma}_{x y}^{\mathrm{T}} Σyx=ΣxyT。
由舒尔补有:
[ Σ x x Σ x y Σ y x Σ y y ] = [ 1 Σ x y Σ y y − 1 0 1 ] [ Σ x x − Σ x y Σ y y − 1 Σ y x 0 0 Σ y y ] [ 1 0 Σ y y − 1 Σ y x 1 ] \left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]=\left[\begin{array}{cc}\mathbf{1} & \boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]=[10ΣxyΣyy−11][Σxx−ΣxyΣyy−1Σyx00Σyy][1Σyy−1Σyx01]
对两边同时求逆有:
[ Σ x x Σ x y Σ y x Σ y y ] − 1 = [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] [ 1 − Σ x y Σ y y − 1 0 1 ] {\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}= \left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right]} \left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\boldsymbol{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]−1=[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1][10−ΣxyΣyy−11]
因此,联合概率密度函数 p ( x , y ) p(\boldsymbol{x}, \boldsymbol{y}) p(x,y) 指数部分的二次项为:
( [ x y ] − [ μ x μ y ] ) T [ Σ x x Σ x y Σ y x Σ y y ] − 1 ( [ x y ] − [ μ x μ y ] ) = ( [ x y ] − [ μ x μ y ] ) T [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] × [ 1 − Σ x y Σ y y − 1 0 1 ] ( [ x y ] − [ μ x μ y ] ) = ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) T ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 × ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) + ( y − μ y ) T Σ y y − 1 ( y − μ y ) \begin{aligned}&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{cc}\boldsymbol{1} & \boldsymbol{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \boldsymbol{1}\end{array}\right]\left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right] \\& \times\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} \\& \times\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)+\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\end{aligned} ==([xy]−[μxμy])T[ΣxxΣyxΣxyΣyy]−1([xy]−[μxμy])([xy]−[μxμy])T[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1]×[10−ΣxyΣyy−11]([xy]−[μxμy])(x−μx−ΣxyΣyy−1(y−μy))T(Σxx−ΣxyΣyy−1Σyx)−1×(x−μx−ΣxyΣyy−1(y−μy))+(y−μy)TΣyy−1(y−μy)
很明显可以看出,这是两个二次项的和。
又由贝叶斯公式有:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y}) p(x,y)=p(x∣y)p(y)
并且:
p ( y ) = N ( μ y , Σ y y ) p(\boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y y}\right) p(y)=N(μy,Σyy)
因此,由幂运算中同底数幂相乘,底数不变、指数相加的性质,可以得到:
p ( x ∣ y ) = N ( μ x + Σ x y Σ y y − 1 ( y − μ y ) , Σ x x − Σ x y Σ y y − 1 Σ y x ) p(\boldsymbol{x} \mid \boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right), \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right) p(x∣y)=N(μx+ΣxyΣyy−1(y−μy),Σxx−ΣxyΣyy−1Σyx)
这便是高斯推断中最重要的部分:从状态的先验概率分布出发,然后基于一些观测值来缩小这个范围。
边栏推荐
猜你喜欢
随机推荐
米哈游--测试开发提前批
Prometheus监控Harbor(二进制版)
Why Flutter Flutter of tutorials is the best choice for business?
"Miscellaneous" barcode by Excel as a string
电子邮件安全或面临新威胁!
3D Semantic Segmentation - 2DPASS
The Chinese Valentine's Day event is romantically launched, don't let the Internet slow down and miss the dark time
查看CUDA、pytorch等的版本号
JS get parameter value of URL hyperlink
Salesforce's China business may see new changes, rumors may be closing
Shell编程之循环语句与函数
全球首款量产,获定点最多!这家AVP Tier1如何实现领跑?
Nanoprobes丨Nanogold-抗体和链霉亲和素偶联物
The Beijing E-sports Metaverse Forum was successfully held
响应式织梦模板塑身瑜伽类网站
Nanoprobes Mono- Sulfo -NHS-Nanogold的使用和应用
Pytest学习-skip/skipif
Graph-node:创建一个新的subgraph
LYVE1抗体丨Relia Tech LYVE1抗体解决方案
2022/8/3 Exam Summary









