当前位置:网站首页>高斯推断推导
高斯推断推导
2022-08-03 23:58:00 【威士忌燕麦拿铁】
设有一对服从多元正态分布的变量 ( x , y ) (\boldsymbol{x}, \boldsymbol{y}) (x,y),可以写出他们的联合概率密度函数:
p ( x , y ) = N ( [ μ x μ y ] , [ Σ x x Σ x y Σ y x Σ y y ] ) p(\boldsymbol{x}, \boldsymbol{y})=\mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right],\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\right) p(x,y)=N([μxμy],[ΣxxΣyxΣxyΣyy])
其中, Σ y x = Σ x y T \boldsymbol{\Sigma}_{y x}=\boldsymbol{\Sigma}_{x y}^{\mathrm{T}} Σyx=ΣxyT。
由舒尔补有:
[ Σ x x Σ x y Σ y x Σ y y ] = [ 1 Σ x y Σ y y − 1 0 1 ] [ Σ x x − Σ x y Σ y y − 1 Σ y x 0 0 Σ y y ] [ 1 0 Σ y y − 1 Σ y x 1 ] \left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]=\left[\begin{array}{cc}\mathbf{1} & \boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]=[10ΣxyΣyy−11][Σxx−ΣxyΣyy−1Σyx00Σyy][1Σyy−1Σyx01]
对两边同时求逆有:
[ Σ x x Σ x y Σ y x Σ y y ] − 1 = [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] [ 1 − Σ x y Σ y y − 1 0 1 ] {\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}= \left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right]} \left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\boldsymbol{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]−1=[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1][10−ΣxyΣyy−11]
因此,联合概率密度函数 p ( x , y ) p(\boldsymbol{x}, \boldsymbol{y}) p(x,y) 指数部分的二次项为:
( [ x y ] − [ μ x μ y ] ) T [ Σ x x Σ x y Σ y x Σ y y ] − 1 ( [ x y ] − [ μ x μ y ] ) = ( [ x y ] − [ μ x μ y ] ) T [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] × [ 1 − Σ x y Σ y y − 1 0 1 ] ( [ x y ] − [ μ x μ y ] ) = ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) T ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 × ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) + ( y − μ y ) T Σ y y − 1 ( y − μ y ) \begin{aligned}&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{cc}\boldsymbol{1} & \boldsymbol{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \boldsymbol{1}\end{array}\right]\left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right] \\& \times\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} \\& \times\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)+\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\end{aligned} ==([xy]−[μxμy])T[ΣxxΣyxΣxyΣyy]−1([xy]−[μxμy])([xy]−[μxμy])T[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1]×[10−ΣxyΣyy−11]([xy]−[μxμy])(x−μx−ΣxyΣyy−1(y−μy))T(Σxx−ΣxyΣyy−1Σyx)−1×(x−μx−ΣxyΣyy−1(y−μy))+(y−μy)TΣyy−1(y−μy)
很明显可以看出,这是两个二次项的和。
又由贝叶斯公式有:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y}) p(x,y)=p(x∣y)p(y)
并且:
p ( y ) = N ( μ y , Σ y y ) p(\boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y y}\right) p(y)=N(μy,Σyy)
因此,由幂运算中同底数幂相乘,底数不变、指数相加的性质,可以得到:
p ( x ∣ y ) = N ( μ x + Σ x y Σ y y − 1 ( y − μ y ) , Σ x x − Σ x y Σ y y − 1 Σ y x ) p(\boldsymbol{x} \mid \boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right), \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right) p(x∣y)=N(μx+ΣxyΣyy−1(y−μy),Σxx−ΣxyΣyy−1Σyx)
这便是高斯推断中最重要的部分:从状态的先验概率分布出发,然后基于一些观测值来缩小这个范围。
边栏推荐
- The curl using guide
- internship:编写excel表的上传方法(导入)
- Nanoprobes Alexa Fluor 488 FluoroNanogold 偶联物
- jav一键生成数据库文档
- 响应式织梦模板餐饮酒店类网站
- 2021年数据泄露成本报告解读
- sqlnet.ora文件与连接认证方式的小测试
- V8中的快慢数组(附源码、图文更易理解)
- In V8 how arrays (with source code, picture and text easier to understand)
- The Beijing E-sports Metaverse Forum was successfully held
猜你喜欢
3D Semantic Segmentation - 2DPASS
用两个栈模拟队列
After building the pytorch environment, the pip and conda commands cannot be used
超级完美版布局有快捷键,有背景置换
(PC+WAP)织梦模板螺钉手柄类网站
Read FastDFS in one article
孙宇晨受邀参加36氪元宇宙峰会并发表主题演讲
The Chinese Valentine's Day event is romantically launched, don't let the Internet slow down and miss the dark time
The super perfect layout has shortcut keys and background replacement
corn表达式 具体详解与案例
随机推荐
现货白银需要注意八大事项
查看CUDA、pytorch等的版本号
JS获得URL超链接的参数值
Go编译原理系列7(Go源码调试)
我的祖国
V8中的快慢数组(附源码、图文更易理解)
The Chinese Valentine's Day event is romantically launched, don't let the Internet slow down and miss the dark time
代码重构:面向单元测试
(PC+WAP)织梦模板螺钉手柄类网站
win10+cuda11.7+pytorch1.12.0安装
vscode插件设置——Golang开发环境配置
【杂项】通过Excel为字符串产生条码
2022/8/3 Exam Summary
并查集详解
浅谈我国产业园区未来的发展方向
Unity 截取3D图像 与 画中画PIP的实现
Free自由协议系统开发
【MySQL —— 索引】
Unity intercepts 3D images and the implementation of picture-in-picture PIP
用栈实现队列