当前位置:网站首页>高斯推断推导
高斯推断推导
2022-08-03 23:58:00 【威士忌燕麦拿铁】
设有一对服从多元正态分布的变量 ( x , y ) (\boldsymbol{x}, \boldsymbol{y}) (x,y),可以写出他们的联合概率密度函数:
p ( x , y ) = N ( [ μ x μ y ] , [ Σ x x Σ x y Σ y x Σ y y ] ) p(\boldsymbol{x}, \boldsymbol{y})=\mathcal{N}\left(\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right],\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\right) p(x,y)=N([μxμy],[ΣxxΣyxΣxyΣyy])
其中, Σ y x = Σ x y T \boldsymbol{\Sigma}_{y x}=\boldsymbol{\Sigma}_{x y}^{\mathrm{T}} Σyx=ΣxyT。
由舒尔补有:
[ Σ x x Σ x y Σ y x Σ y y ] = [ 1 Σ x y Σ y y − 1 0 1 ] [ Σ x x − Σ x y Σ y y − 1 Σ y x 0 0 Σ y y ] [ 1 0 Σ y y − 1 Σ y x 1 ] \left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]=\left[\begin{array}{cc}\mathbf{1} & \boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]=[10ΣxyΣyy−11][Σxx−ΣxyΣyy−1Σyx00Σyy][1Σyy−1Σyx01]
对两边同时求逆有:
[ Σ x x Σ x y Σ y x Σ y y ] − 1 = [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] [ 1 − Σ x y Σ y y − 1 0 1 ] {\left[\begin{array}{cc}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}= \left[\begin{array}{cc}\mathbf{1} & \mathbf{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \mathbf{1}\end{array}\right]} \left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\boldsymbol{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right]\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right] [ΣxxΣyxΣxyΣyy]−1=[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1][10−ΣxyΣyy−11]
因此,联合概率密度函数 p ( x , y ) p(\boldsymbol{x}, \boldsymbol{y}) p(x,y) 指数部分的二次项为:
( [ x y ] − [ μ x μ y ] ) T [ Σ x x Σ x y Σ y x Σ y y ] − 1 ( [ x y ] − [ μ x μ y ] ) = ( [ x y ] − [ μ x μ y ] ) T [ 1 0 − Σ y y − 1 Σ y x 1 ] [ ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 0 0 Σ y y − 1 ] × [ 1 − Σ x y Σ y y − 1 0 1 ] ( [ x y ] − [ μ x μ y ] ) = ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) T ( Σ x x − Σ x y Σ y y − 1 Σ y x ) − 1 × ( x − μ x − Σ x y Σ y y − 1 ( y − μ y ) ) + ( y − μ y ) T Σ y y − 1 ( y − μ y ) \begin{aligned}&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{ll}\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x y} \\\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y y}\end{array}\right]^{-1}\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{cc}\boldsymbol{1} & \boldsymbol{0} \\-\boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x} & \boldsymbol{1}\end{array}\right]\left[\begin{array}{cc}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} & \boldsymbol{0} \\\mathbf{0} & \boldsymbol{\Sigma}_{y y}^{-1}\end{array}\right] \\& \times\left[\begin{array}{cc}\mathbf{1} & -\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \\\mathbf{0} & \mathbf{1}\end{array}\right]\left(\left[\begin{array}{l}\boldsymbol{x} \\\boldsymbol{y}\end{array}\right]-\left[\begin{array}{l}\boldsymbol{\mu}_{x} \\\boldsymbol{\mu}_{y}\end{array}\right]\right) \\=&\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)^{\mathrm{T}}\left(\boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right)^{-1} \\& \times\left(\boldsymbol{x}-\boldsymbol{\mu}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\right)+\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)^{\mathrm{T}} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right)\end{aligned} ==([xy]−[μxμy])T[ΣxxΣyxΣxyΣyy]−1([xy]−[μxμy])([xy]−[μxμy])T[1−Σyy−1Σyx01][(Σxx−ΣxyΣyy−1Σyx)−100Σyy−1]×[10−ΣxyΣyy−11]([xy]−[μxμy])(x−μx−ΣxyΣyy−1(y−μy))T(Σxx−ΣxyΣyy−1Σyx)−1×(x−μx−ΣxyΣyy−1(y−μy))+(y−μy)TΣyy−1(y−μy)
很明显可以看出,这是两个二次项的和。
又由贝叶斯公式有:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x} \mid \boldsymbol{y}) p(\boldsymbol{y}) p(x,y)=p(x∣y)p(y)
并且:
p ( y ) = N ( μ y , Σ y y ) p(\boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{y}, \boldsymbol{\Sigma}_{y y}\right) p(y)=N(μy,Σyy)
因此,由幂运算中同底数幂相乘,底数不变、指数相加的性质,可以得到:
p ( x ∣ y ) = N ( μ x + Σ x y Σ y y − 1 ( y − μ y ) , Σ x x − Σ x y Σ y y − 1 Σ y x ) p(\boldsymbol{x} \mid \boldsymbol{y}) =\mathcal{N}\left(\boldsymbol{\mu}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{y}\right), \boldsymbol{\Sigma}_{x x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y y}^{-1} \boldsymbol{\Sigma}_{y x}\right) p(x∣y)=N(μx+ΣxyΣyy−1(y−μy),Σxx−ΣxyΣyy−1Σyx)
这便是高斯推断中最重要的部分:从状态的先验概率分布出发,然后基于一些观测值来缩小这个范围。
边栏推荐
- Unity intercepts 3D images and the implementation of picture-in-picture PIP
- 直播系统聊天技术(八):vivo直播系统中IM消息模块的架构实践
- 用两个栈模拟队列
- Read FastDFS in one article
- ping数据包中的进程号
- win10+cuda11.7+pytorch1.12.0安装
- 小身材有大作用——光模块寿命分析(二)
- 单例模式使用饿汉式和懒汉式创建一定安全?很多人不知
- LeetCode 0155. 最小栈
- It will invest about 200 billion US dollars in the United States in 20 years, and Samsung Electronics looks so handsome
猜你喜欢
随机推荐
BioVendor人Clara细胞蛋白(CC16)Elisa试剂盒检测步骤
【杂项】通过Excel为字符串产生条码
直播系统聊天技术(八):vivo直播系统中IM消息模块的架构实践
单例模式使用饿汉式和懒汉式创建一定安全?很多人不知
Creo 9.0二维草图的诊断:加亮开放端点
"Miscellaneous" barcode by Excel as a string
Free自由协议系统开发
vscode插件设置——Golang开发环境配置
leetcode/子串中不能有重复字符的最长子串
Nanoprobes Mono- Sulfo -NHS-Nanogold的使用和应用
JS get parameter value of URL hyperlink
免费的公共WiFi不要乱连,遭中间人攻击了吧?
小身材有大作用——光模块寿命分析(二)
OpenCV 图像拼接
响应式织梦模板餐饮酒店类网站
用两个栈模拟队列
Graph-node:创建一个新的subgraph
并查集详解
状态机实验
HNUCM 您好中国