当前位置:网站首页>[combinatorial mathematics] counting model, common combinatorial numbers and combinatorial identities**
[combinatorial mathematics] counting model, common combinatorial numbers and combinatorial identities**
2022-07-03 16:39:00 【Programmer community】
One 、 Counting model
The counting model currently involved :
1 . Select the question :
n
n
n Meta set
S
S
S , from
S
S
S Select... From the set
r
r
r Elements ;
according to Whether the element can be repeated , Whether the selection process is orderly , The selection question is divided into four sub types :
| Elements do not repeat | Elements can be repeated | |
|---|---|---|
| Orderly selection | Set arrangement P ( n , r ) P(n,r) P(n,r) | Multiset arrangement |
| Unordered selection | Set combination C ( n , r ) C(n,r) C(n,r) | Combination of multiple sets |
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
2 . Number of nonnegative integer solutions of indefinite equation :
x
1
+
x
2
+
⋯
+
x
k
=
r
x_1 + x_2 + \cdots + x_k = r
x1+x2+⋯+xk=r
The number of nonnegative integer solutions is :
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
It is also the combinatorial number of multiple sets ;
3 . Non descending path problem :
Basic model : from
(
0
,
0
)
(0,0)
(0,0) To
(
m
,
n
)
(m, n)
(m,n) The number of non descending paths
(
m
+
n
m
)
\dbinom{m + n}{m}
(mm+n) ;
Expand the model 1 : from
(
a
,
b
)
(a,b)
(a,b) To
(
m
,
n
)
(m, n)
(m,n) The number of non descending paths
(
m
−
a
+
n
−
b
m
−
a
)
\dbinom{m-a + n-b}{m-a}
(m−am−a+n−b) ;
Expand the model 2 : from
(
a
,
b
)
(a,b)
(a,b) after
(
c
,
d
)
(c, d)
(c,d) To
(
m
,
n
)
(m, n)
(m,n) The number of non descending paths
(
c
−
a
+
c
−
b
c
−
a
)
(
m
−
c
+
n
−
d
m
−
c
)
\dbinom{c-a + c-b}{c-a}\dbinom{m-c + n-d}{m-c}
(c−ac−a+c−b)(m−cm−c+n−d)
The number of non descending paths of the constraint : from
(
0
,
0
)
(0,0)
(0,0) To
(
n
,
n
)
(n,n)
(n,n) Except endpoint , The number of non descending paths that do not touch the diagonal
Reference resources : 【 Combinatorial mathematics 】 Non descending path problem ( The number of non descending paths of the constraint )
Two 、 Common combination count
Common combination count :
I . Binomial coefficient
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
k
y
n
−
k
(x + y)^n = \sum_{k=0}^n \dbinom{n}{k}x^k y^{n-k}
(x+y)n=k=0∑n(kn)xkyn−k
(
n
k
)
\dbinom{n}{k}
(kn) It's binomial coefficient ;
Binomial coefficient correlation combinatorial identity :
1 . Combinatorial identity ( recursion ) :
( 1 ) recursion 1 :
(
n
k
)
=
(
n
n
−
k
)
\dbinom{n}{k} = \dbinom{n}{n-k}
(kn)=(n−kn)①
( 2 ) recursion 2 :
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dfrac{n}{k} \dbinom{n - 1}{k - 1}
(kn)=kn(k−1n−1)②
( 3 ) recursion 3 ( Pascal / Yang Hui's trigonometric formula ) :
(
n
k
)
=
(
n
−
1
k
)
+
(
n
−
1
k
−
1
)
\dbinom{n}{k} = \dbinom{n - 1}{k} + \dbinom{n - 1}{k - 1}
(kn)=(kn−1)+(k−1n−1)③
2 . Review the combinatorial identities of summation under four variables : The combinatorial identity introduced earlier The number of combinations in
(
n
k
)
\dbinom{n}{k}
(kn) , Is the next item
k
k
k Have been accumulating changes , have
∑
k
=
0
n
\sum\limits_{k=0}^{n}
k=0∑n Cumulative property , Previous item
n
n
n It is the same. ;
( 1 ) Simple and :
∑
k
=
0
n
(
n
k
)
=
2
n
\sum\limits_{k=0}^{n}\dbinom{n}{k} = 2^n
k=0∑n(kn)=2n④
( 2 ) Staggered and :
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
=
0
\sum\limits_{k=0}^{n} (-1)^k \dbinom{n}{k} = 0
k=0∑n(−1)k(kn)=0⑤
( 3 ) Change the next term to sum 3 :
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
\sum\limits_{k=0}^{n} k \dbinom{n}{k} = n 2^{n-1}
k=0∑nk(kn)=n2n−1⑥
( 4 ) Change the next term to sum 4 :
∑
k
=
0
n
k
2
(
n
k
)
=
n
(
n
+
1
)
2
n
−
2
\sum_{k=0}^{n} k^2 \dbinom{n}{k} = n ( n+1 ) 2^{n-2}
∑k=0nk2(kn)=n(n+1)2n−2⑦
3 . Change the upper term to sum :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)⑧
4 . product :
∑
l
=
0
n
(
l
k
)
=
(
n
+
1
k
+
1
)
\sum\limits_{l=0}^{n} \dbinom{l}{k} = \dbinom{n + 1}{k + 1}
l=0∑n(kl)=(k+1n+1)⑨
5 . Sum of product :
( 1 ) Combinatorial identity ( Sum of product ) 1 :
∑
k
=
0
r
(
m
k
)
(
n
r
−
k
)
=
(
m
+
n
r
)
,
r
=
min
{
m
,
n
}
\sum\limits_{k=0}^{r}\dbinom{m}{k}\dbinom{n}{r-k} = \dbinom{m + n }{r} , \ \ \ \ \ \ r= \min \{ m, n \}
k=0∑r(km)(r−kn)=(rm+n), r=min{ m,n}⑩
( 2 ) Combinatorial identity ( Sum of product ) 2 :
∑
k
=
0
r
(
m
k
)
(
n
k
)
=
(
m
+
n
m
)
\sum\limits_{k=0}^{r}\dbinom{m}{k}\dbinom{n}{k} = \dbinom{m + n }{m}
k=0∑r(km)(kn)=(mm+n)⑪
II . Polynomial coefficients
(
x
1
+
x
2
+
⋯
+
x
t
)
n
\ \ \ \ (x_1 + x_2 + \cdots + x_t)^n
(x1+x2+⋯+xt)n
=
∑
full
foot
n
1
+
n
2
+
⋯
+
n
t
=
n
Not
negative
whole
Count
Explain
individual
Count
(
n
n
1
n
2
⋯
n
t
)
x
1
n
1
x
2
n
2
⋯
x
t
n
t
= \sum\limits_{ Satisfy n_1 + n_2 + \cdots + n_t = n Number of nonnegative integer solutions }\dbinom{n}{n_1 n_2 \cdots n_t}x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}
= full foot n1+n2+⋯+nt=n Not negative whole Count Explain individual Count ∑(n1n2⋯ntn)x1n1x2n2⋯xtnt
(
n
n
1
n
2
⋯
n
t
)
\dbinom{n}{n_1 n_2 \cdots n_t}
(n1n2⋯ntn) Is a polynomial coefficient
Polynomial coefficient correlation combination identity :
1 . Polynomial theorem inference 3 :
∑
(
n
n
1
n
2
⋯
n
t
)
=
t
n
\sum\dbinom{n}{n_1 n_2 \cdots n_t} = t^n
∑(n1n2⋯ntn)=tn
2 . Full Permutation of multiple sets :
(
n
n
1
n
2
⋯
n
t
)
=
n
!
n
1
!
n
2
!
⋯
n
k
!
\dbinom{n}{n_1 n_2 \cdots n_t} = \cfrac{n!}{n_1! n_2! \cdots n_k!}
(n1n2⋯ntn)=n1!n2!⋯nk!n!
3 . recursion :
(
n
n
1
n
2
⋯
n
t
)
=
(
n
−
1
(
n
1
−
1
)
n
2
⋯
n
t
)
+
(
n
−
1
n
1
(
n
2
−
1
)
⋯
n
t
)
+
(
n
−
1
n
1
n
2
⋯
(
n
t
−
1
)
)
\dbinom{n}{n_1 n_2 \cdots n_t} = \dbinom{n-1}{(n_1-1) n_2 \cdots n_t} + \dbinom{n-1}{n_1 (n_2 - 1) \cdots n_t}+ \dbinom{n-1}{n_1 n_2 \cdots (n_t -1)}
(n1n2⋯ntn)=((n1−1)n2⋯ntn−1)+(n1(n2−1)⋯ntn−1)+(n1n2⋯(nt−1)n−1)
边栏推荐
- How programming apes grow rapidly
- What material is sa537cl2? Analysis of mechanical properties of American standard container plate
- Cocos Creator 2. X automatic packaging (build + compile)
- Custom plug-in construction and use of QT plug-in
- Slam learning notes - build a complete gazebo multi machine simulation slam from scratch (I)
- Preventing/catching “IllegalArgumentException: parameter must be a descendant of this view” error
- 关于视觉SLAM的最先进技术的调查-A survey of state-of-the-art on visual SLAM
- Google Earth engine (GEE) - daymet v4: daily surface weather data set (1000m resolution) including data acquisition methods for each day
- Visual SLAM algorithms: a survey from 2010 to 2016
- Threejs Part 2: vertex concept, geometry structure
猜你喜欢

QT串口ui设计和解决显示中文乱码

Slam learning notes - build a complete gazebo multi machine simulation slam from scratch (4)

What material is sa537cl2? Analysis of mechanical properties of American standard container plate

ThreeJS 第二篇:顶点概念、几何体结构

一台服务器最大并发 tcp 连接数多少?65535?

深入理解 SQL 中的 Grouping Sets 语句

Myopia: take off or match glasses? These problems must be understood clearly first

Slam learning notes - build a complete gazebo multi machine simulation slam from scratch (III)

关于视觉SLAM的最先进技术的调查-A survey of state-of-the-art on visual SLAM

word 退格键删除不了选中文本,只能按delete
随机推荐
Preventing/catching “IllegalArgumentException: parameter must be a descendant of this view” error
Is it safe to open a stock account by mobile registration? Does it need money to open an account
MySQL single table field duplicate data takes the latest SQL statement
MySQL converts comma separated attribute field data from column to row
Custom plug-in construction and use of QT plug-in
Deep understanding of grouping sets statements in SQL
拼夕夕二面:说说布隆过滤器与布谷鸟过滤器?应用场景?我懵了。。
Construction practice camp - graduation summary of phase 6
Aike AI frontier promotion (7.3)
Détails du contrôle de la congestion TCP | 3. Espace de conception
(Supplement) double pointer topic
What material is sa537cl2? Analysis of mechanical properties of American standard container plate
NLP four paradigms: paradigm 1: fully supervised learning in the era of non neural networks (Feature Engineering); Paradigm 2: fully supervised learning based on neural network (Architecture Engineeri
Le zèbre a été identifié comme un chien, et la cause de l'erreur d'AI a été trouvée par Stanford
Two sides of the evening: tell me about the bloom filter and cuckoo filter? Application scenario? I'm confused..
Mysql 单表字段重复数据取最新一条sql语句
【剑指 Offer 】64. 求1+2+…+n
How programming apes grow rapidly
Golang decorator mode and its use in NSQ
NSQ源码安装运行过程