当前位置:网站首页>Resnet18 actual battle Baoke dream spirit

Resnet18 actual battle Baoke dream spirit

2022-07-05 12:26:00 Dongcheng West que

 

File path

 

 

 

 

pokemon.py( Custom dataset load file )

import torch
import os,glob
import random,csv
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
from PIL import Image


datapath="pokemon"

class Pokemon(Dataset):

    def __init__(self,root,resize,mode):
        super(Pokemon,self).__init__()
        self.root=root
        self.resize=resize
        self.name2label={}
        for name in sorted(os.listdir(os.path.join(root))):
            if not os.path.isdir(os.path.join(root,name)):
                continue
            self.name2label[name]=len(self.name2label.keys())
        # print(self.name2label)
        self.images,self.labels=self.load_csv("images.csv")

        if mode=="train":  #60%
            self.images=self.images[:int(0.6*len(self.images))]
            self.labels=self.labels[:int(0.6*len(self.labels))]
        elif mode=="val":  #20%  =60%->80%
            self.images = self.images[int(0.6 * len(self.images)):int(0.8 * len(self.images))]
            self.labels = self.labels[int(0.6 * len(self.labels)):int(0.8 * len(self.labels))]
        else:  #20%  =80%->100%
            self.images = self.images[int(0.8 * len(self.images)):]
            self.labels = self.labels[int(0.8 * len(self.labels)):]

    def load_csv(self,filename):

        if os.path.exists(os.path.join(self.root,filename))==0:
            images=[]
            for name in self.name2label.keys():
                images+=glob.glob(os.path.join(self.root,name,"*.png"))
                images+=glob.glob(os.path.join(self.root,name,"*.jpg"))
                images+=glob.glob(os.path.join(self.root,name,"*.jpeg"))
                images+=glob.glob(os.path.join(self.root,name,"*.gif"))
            # print(len(images),images)
# {bulbasaur:0,charmander:1,mewtwo:2   }
            random.shuffle(images)
            with open(os.path.join(self.root,filename),mode="w",newline="") as f:
                writer=csv.writer(f)
                for img in images:  #E:\\datasets\\pokemon\\bulbasaur\\00000000.png
                    name=img.split(os.sep)[-2]
                    label=self.name2label[name]
                    #E:\\datasets\\pokemon\\bulbasaur\\00000000.png   ,0
                    writer.writerow([img,label])
                print("writen into csv file:",filename)

        # read from csv file
        images,labels=[],[]
        with open(os.path.join(self.root,filename))as f:
            reader=csv.reader(f)
            for row in reader:
                img,label=row
                label=int(label)
                images.append(img)
                labels.append(label)

        assert len(images)==len(labels)

        return images,labels

    def __len__(self):
        return len(self.images)
    def denormalize(self,x_hat):
        mean=[0.485,0.456,0.406]
        std=[0.229,0.224,0.225]
        # x_hat=(x-mean)/std
        # x=x_hat*std=mean
        # x:[c,h,w]
        # mean:[3]=>[3,1,1]
        mean=torch.tensor(mean).unsqueeze(1).unsqueeze(1)
        std=torch.tensor(std).unsqueeze(1).unsqueeze(1)
        # print("x_hat",x_hat.shape,"std",std.shape,"mean",mean.shape)
        x=x_hat*std+mean
        return x

    def __getitem__(self, idx):

        #idx [0-len(images)]
        #self.images,self.labels
        #img:"pokemon\\bulbasaur\\0000000.png"   label :0
        img,label=self.images[idx],self.labels[idx]

        tf=transforms.Compose([
            lambda  x:Image.open(x).convert("RGB"),  #string path=>image data
            transforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),
            transforms.RandomRotation(15),
            transforms.CenterCrop(self.resize),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])  #mean,std Is a statistical constant , Normalize the image 
        ])
        img=tf(img)
        label=torch.tensor(label)

        return img,label


def main():
    from visdom import  Visdom
    import time
    import torchvision

    viz=Visdom()

    #  Load data set , Method 2 
    """
        tf = transforms.Compose([
            transforms.Resize((64,64)),
            transforms.ToTensor(),
        ])
        db=torchvision.datasets.ImageFolder(root="pokemon",transform=tf)
        loader=DataLoader(db,batch_size=32,shuffle=True)
        print("make-code",db.class_to_idx)
        for x, y in loader:
            viz.images(x, nrow=8, win="batch", opts=dict(title="batch"))
            viz.text(str(y.numpy()), win="lablel", opts=dict(title="batch-y"))
            time.sleep(10)
    """

    db=Pokemon(datapath,128,"train")

    x,y=next(iter(db))
    print("sample",x.shape,y.shape,y)
    viz.image(db.denormalize(x),win="sample_x",opts=dict(title="sample_x"))
    loader=DataLoader(db,batch_size=32,shuffle=True,num_workers=8)
    for x,y in loader:
        viz.images(db.denormalize(x),nrow=8,win="batch",opts=dict(title="batch"))
        viz.text(str(y.numpy()),win="lablel",opts=dict(title="batch-y"))
        time.sleep(10)


if __name__=="__main__":
    main()

resnet.py(resnet Network model definition )

import  torch
from    torch import  nn
from    torch.nn import functional as F

class ResBlk(nn.Module):
    """
    resnet block
    """

    def __init__(self, ch_in, ch_out, stride=1):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
                nn.BatchNorm2d(ch_out)
            )


    def forward(self, x):
        """
        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        # short cut.
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out
        out = F.relu(out)

        return out


class ResNet18(nn.Module):

    def __init__(self, num_class):
        super(ResNet18, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
            nn.BatchNorm2d(16)
        )
        # followed 4 blocks
        # [b, 16, h, w] => [b, 32, h ,w]
        self.blk1 = ResBlk(16, 32, stride=3)
        # [b, 32, h, w] => [b, 64, h, w]
        self.blk2 = ResBlk(32, 64, stride=3)
        # # [b, 64, h, w] => [b, 128, h, w]
        self.blk3 = ResBlk(64, 128, stride=2)
        # # [b, 128, h, w] => [b, 256, h, w]
        self.blk4 = ResBlk(128, 256, stride=2)

        # [b, 256, 7, 7]
        self.outlayer = nn.Linear(256*3*3, num_class)

    def forward(self, x):
        """
        :param x:
        :return:
        """
        x = F.relu(self.conv1(x))

        # [b, 64, h, w] => [b, 1024, h, w]
        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        # print(x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)

        return x



def main():
    blk = ResBlk(64, 128)
    tmp = torch.randn(2, 64, 224, 224)
    out = blk(tmp)
    print('block:', out.shape)


    model = ResNet18(5)
    tmp = torch.randn(2, 3, 224, 224)
    out = model(tmp)
    print('resnet:', out.shape)

    p = sum(map(lambda p:p.numel(), model.parameters()))
    print('parameters size:', p)


if __name__ == '__main__':
    main()

train.py( Training documents )

 

import torch
from torch import optim,nn
import visdom
import torchvision
from torch.utils.data import DataLoader

from pokemon import Pokemon
from resnet import ResNet18


batchsz=32
lr=1e-3
epochs=20

device=torch.device("cuda")
torch.manual_seed(1234)
train_db=Pokemon("pokemon",224,mode="train")
val_db=Pokemon("pokemon",224,mode="val")
test_db=Pokemon("pokemon",224,mode="test")
train_loader=DataLoader(train_db,batch_size=batchsz,shuffle=True,
                        num_workers=4)
val_loader=DataLoader(val_db,batch_size=batchsz, num_workers=2)
test_loader=DataLoader(test_db,batch_size=batchsz, num_workers=2)

viz=visdom.Visdom()

def evalute(model,loader):
    correct=0
    total=len(loader.dataset)
    for x,y in loader:
        x,y=x.to(device),y.to(device)
        with torch.no_grad():
            logits=model(x)
            pred=logits.argmax(dim=1)
        correct+=torch.eq(pred,y).sum().float().item()
    return correct/total


def main():
    model=ResNet18(5).to(device)
    optimizer=optim.Adam(model.parameters(),lr=lr)
    criteon=nn.CrossEntropyLoss()
    best_acc,best_epoch=0,0
    global_step=0
    viz.line([0],[-1],win="loss",opts=dict(title="loss"))
    viz.line([0],[-1],win="val_acc",opts=dict(title="val_acc"))
    for epoch in range(epochs):

        for step,(x,y) in enumerate(train_loader):
            x,y=x.to(device),y.to(device)
            logits=model(x)
            # print("y", y.shape,y)
            # print("logits",logits.shape,logits)
            loss=criteon(logits,y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if step%10==0:
                print("epoch:",epoch,"step:",step,"loss:",loss.item())
            viz.line([loss.item()], [global_step], win="loss", update="append")
            global_step+=1
        if epoch%1==0:
            val_acc=evalute(model,val_loader)
            viz.line([val_acc], [global_step], win="val_acc", update="append")
            print("epoch:",epoch,"val_acc:",val_acc)
            if val_acc>best_acc:
                best_epoch=epoch
                best_acc=val_acc
                torch.save(model.state_dict(),"best.mdl")

    print("best acc:",best_acc,"best epoch:",best_epoch)
    
    
    model.load_state_dict(torch.load("best.mdl"))
    print("loaded from ckpt!")

    test_acc=evalute(model,test_loader)
    print("test acc:",test_acc)


if __name__ == '__main__':
    main()

utils.py

from    matplotlib import pyplot as plt
import  torch
from    torch import nn

class Flatten(nn.Module):

    def __init__(self):
        super(Flatten, self).__init__()

    def forward(self, x):
        shape = torch.prod(torch.tensor(x.shape[1:])).item()
        return x.view(-1, shape)


def plot_image(img, label, name):

    fig = plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        plt.tight_layout()
        plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
        plt.title("{}: {}".format(name, label[i].item()))
        plt.xticks([])
        plt.yticks([])
    plt.show()

 

train_transfer.py    Transfer learning to achieve

import torch
from torch import optim,nn
import visdom
import torchvision
from torch.utils.data import DataLoader

from pokemon import Pokemon
# from resnet import ResNet18
from torchvision.models import resnet18
from utils import Flatten


batchsz=32
lr=1e-3
epochs=20

device=torch.device("cuda")
torch.manual_seed(1234)
train_db=Pokemon("pokemon",224,mode="train")
val_db=Pokemon("pokemon",224,mode="val")
test_db=Pokemon("pokemon",224,mode="test")
train_loader=DataLoader(train_db,batch_size=batchsz,shuffle=True,
                        num_workers=4)
val_loader=DataLoader(val_db,batch_size=batchsz, num_workers=2)
test_loader=DataLoader(test_db,batch_size=batchsz, num_workers=2)

viz=visdom.Visdom()

def evalute(model,loader):
    correct=0
    total=len(loader.dataset)
    for x,y in loader:
        x,y=x.to(device),y.to(device)
        with torch.no_grad():
            logits=model(x)
            pred=logits.argmax(dim=1)
        correct+=torch.eq(pred,y).sum().float().item()
    return correct/total


def main():
    # model=ResNet18(5).to(device)
    trained_model=resnet18(pretrained=True)
    model=nn.Sequential(*list(trained_model.children())[:-1],  #[b,512,1,1]
                        Flatten(),  #[b,512,1,1]=>[b,512]
                        nn.Linear(512,5)
                        ).to(device)
    # x=torch.randn(2,3,224,224)
    # print(model(x).shape)
    optimizer=optim.Adam(model.parameters(),lr=lr)
    criteon=nn.CrossEntropyLoss()
    best_acc,best_epoch=0,0
    global_step=0
    viz.line([0],[-1],win="loss",opts=dict(title="loss"))
    viz.line([0],[-1],win="val_acc",opts=dict(title="val_acc"))
    for epoch in range(epochs):
        for step,(x,y) in enumerate(train_loader):
            x,y=x.to(device),y.to(device)
            logits=model(x)
            loss=criteon(logits,y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if step%10==0:
                print("epoch:",epoch,"step:",step,"loss:",loss.item())
            viz.line([loss.item()], [global_step], win="loss", update="append")
            global_step+=1
        if epoch%1==0:
            val_acc=evalute(model,val_loader)
            viz.line([val_acc], [global_step], win="val_acc", update="append")
            print("epoch:",epoch,"val_acc:",val_acc)
            if val_acc>best_acc:
                best_epoch=epoch
                best_acc=val_acc
                torch.save(model.state_dict(),"best.mdl")

    print("best acc:",best_acc,"best epoch:",best_epoch)
    model.load_state_dict(torch.load("best.mdl"))
    print("loaded from ckpt!")

    test_acc=evalute(model,test_loader)
    print("test acc:",test_acc)


if __name__ == '__main__':
    main()

 

 

 

 

 

 

 

 

 

 

 

 

 

原网站

版权声明
本文为[Dongcheng West que]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202140529450689.html