当前位置:网站首页>Visual explanation of Newton iteration method
Visual explanation of Newton iteration method
2022-07-05 00:29:00 【deephub】
Newton's iteration (Newton’s method) Also known as Newton - Ralph ( Raffson ) Method (Newton-Raphson method), It's Newton in 17 An approximate method for solving equations in real and complex fields was proposed in the 20th century .
With Isaac Newton and Joseph Raphson Named Newton-Raphson The method is designed as a root algorithm , This means that its goal is to find the function f(x)=0 Value x. Geometrically, it can be regarded as x Value , At this time, the function and x Axis intersection .
Newton-Raphson Algorithms can also be used for simple things , For example, given the previous continuous evaluation results , Finding out the prediction needs to be obtained in the final exam A The scores of . In fact, if you've ever been Microsoft Excel Solver functions have been used in , Then I used something like Newton-Raphson Such a rooting Algorithm . Another complex use case is to use Black-Scholes The formula reversely solves the implied volatility of financial option contracts .
Newton-Raphson The formula
Although the formula itself is very simple , But if you want to know what it is actually doing, you need to look carefully .
First , Let's review the overall approach :
1、 Preliminary guess where the root may be
2、 application Newton-Raphson The formula gets the updated guess , This guess will be closer to the root than the initial guess
3、 Repeat step 2, Until the new guess is close enough to the real value .
Is that enough ?Newton-Raphson Method gives the approximate value of the root , Although it is usually close enough for any reasonable application ! But how do we define close enough ? When to stop iteration ?
In general Newton-Raphson Method there are two ways to deal with when to stop .1、 If you guess that the change from one step to the next does not exceed the threshold , for example 0.00001, Then the algorithm will stop and confirm that the latest guess is close enough .2、 If we reach a certain number of guesses but still do not reach the threshold , Then we'll give up and continue to guess .
From the formula we can see , Every new guess is that our previous guess has been adjusted by a mysterious number . If we visualize this process through an example , It will soon know what happened !
As an example , Let's consider the above function , And make one x=10 Initial guess ( Notice that the actual root here is x=4). Newton-Raphson The first few guesses of the algorithm are in the following GIF Medium visualization
Our initial guess was x=10. In order to calculate our next guess , We need to evaluate the function itself and its application in x=10 Derivative at . stay 10 The derivative of the function evaluated at simply gives the slope of the tangent curve at that point . The tangent is at GIF Drawn as Tangent 0.
Look at the position of the next guess relative to the previous tangent , Did you notice anything ? The next guess appears between the previous tangent and x Where the axes intersect . This is it. Newton-Raphson Highlights of the method !
in fact , f(x)/f’(x) It just gives our current guess and tangent crossing x The distance between the points of the axis ( stay x In the direction of ). It is this distance that tells us the guess of each update , As we are GIF As seen in , As we approach the root itself , Updates are getting smaller and smaller .
What if the function cannot be differentiated manually ?
The above example is a function that can be easily differentiated by hand , This means that we can calculate without difficulty f’(x). However , This may not be the case , And there are some useful techniques that can approximate the derivative without knowing its analytical solution .
These derivative approximation methods are beyond the scope of this paper , You can find more information about finite difference methods .
problem
Keen readers may have found a problem from the above example , Even if our example function has two roots (x=-2 and x=4),Newton-Raphson Methods can only recognize one root . Newton iteration will converge to a certain value according to the selection of initial value , So we can only find a value . If you need other values , It is to bring in the root of the current solution and reduce the equation to order , Then find the second root . This is, of course, a problem , Is not the only drawback of this approach :
- Newton's method is an iterative algorithm , Every step needs to solve the objective function Hessian The inverse of the matrix , The calculation is complicated .
- The convergence rate of Newton's method is second order , For a positive definite quadratic function, the optimal solution can be obtained by one-step iteration .
- Newton's method is locally convergent , When the initial point is not selected , Often leads to non convergence ;
- Second order Hessian The matrix must be reversible , Otherwise, the algorithm is difficult .
Comparison with gradient descent method
Gradient descent method and Newton method are both iterative solutions , But the gradient descent method is a gradient solution , And Newton's method / The quasi Newton method uses second order Hessian The inverse matrix or pseudo inverse matrix of a matrix is solved . In essence , Newton's method is second order convergence , Gradient descent is first order convergence , So Newton's method is faster . In a more popular way , For example, you want to find the shortest path to the bottom of a basin , The gradient descent method only takes one step at a time from your current position in the direction with the largest slope , Newton's method in choosing direction , It's not just about whether the slope is big enough , And think about it when you take a step , Is the slope going to get bigger . It can be said that Newton's method looks a little further than gradient descent method , To get to the bottom faster .( Newton's method has a longer view , So avoid detours ; Relatively speaking , The gradient descent method only considers the local optimum , No overall thinking ).
Then why not use Newton's method instead of gradient descent ?
- Newton's method uses the second derivative of the objective function , In the case of high dimensions, this matrix is very large , Computing and storage are problems .
- In the case of small quantities , The estimation noise of Newton method for the second derivative is too large .
- When the objective function is nonconvex , Newton method is easily attracted by saddle point or maximum point
In fact, there is no good theoretical guarantee for the convergence of the current deep neural network algorithm , Deep neural network is only used because it has better effect in practical application , But can the gradient descent method converge on the deep neural network , Whether it converges to the global best is still uncertain . And the second-order method can obtain higher accuracy solutions , But when the accuracy of neural network parameters is not high, it becomes a problem , Under the deep model, if the parameter accuracy is too high , The generalization of the model will be reduced , Instead, it will increase the risk of model over fitting .
https://www.overfit.cn/post/37cdf43c67df46bbb1ac52418a4237ef
author :Rian Dolphin
边栏推荐
- 【雅思阅读】王希伟阅读P4(matching1)
- 2022.07.03 (LC 6108 decryption message)
- 他做国外LEAD,用了一年时间,把所有房贷都还清了
- PyTorch: In-place Operation
- JS how to realize array to tree
- AcWing164. 可达性统计(拓扑排序+bitset)
- Fs8b711s14 electric wine bottle opener MCU IC scheme development special integrated IC
- Deux nombres se remplacent
- (script) one click deployment of any version of redis - the way to build a dream
- [error reporting] "typeerror: cannot read properties of undefined (reading 'split')“
猜你喜欢
Get to know ROS for the first time
Hisilicon 3559 universal platform construction: YUV422 pit stepping record
ORB(Oriented FAST and Rotated BRIEF)
Power operation and maintenance cloud platform: open the new mode of "unattended and few people on duty" of power system
[IELTS reading] Wang Xiwei reading P4 (matching1)
How many triangles are there in the golden K-line diagram?
同事的接口文档我每次看着就头大,毛病多多。。。
Verilog tutorial (11) initial block in Verilog
Deux nombres se remplacent
企业公司项目开发好一部分基础功能,重要的事保存到线上第一a
随机推荐
模板的进阶
公司要上监控,Zabbix 和 Prometheus 怎么选?这么选准没错!
Identifiers and keywords
Deux nombres se remplacent
打新债开户注册安全吗?有没有风险的?靠谱吗?
[STM32] (I) overview and GPIO introduction
Summary of week 22-07-02
ORB(Oriented FAST and Rotated BRIEF)
[paper reading] cavemix: a simple data augmentation method for brain vision segmentation
leetcode518,377
2022.07.03(LC_6111_统计放置房子的方式数)
【雅思阅读】王希伟阅读P4(matching2段落信息配对题【困难】)
skimage: imread & imsave & imshow
【雅思阅读】王希伟阅读P4(matching1)
Consolidated expression C case simple variable operation
Life is changeable, and the large intestine covers the small intestine. This time, I can really go home to see my daughter-in-law...
URLs and URIs
A new method for analyzing the trend chart of London Silver
Summer challenge brings you to play harmoniyos multi terminal piano performance
Nine Qi single chip microcomputer ny8b062d single key control four LED States