当前位置:网站首页>The less successful implementation and lessons of RESNET
The less successful implementation and lessons of RESNET
2022-07-03 09:09:00 【weixin_ thirty-seven million six hundred and eighty-two thousan】
import torch
from torch import nn
from torch.nn import functional as F
class ResBlk(nn.Module):
""" resnet block """
def __init__(self, ch_in, ch_out):
""" :param ch_in: :param ch_out: """
super(ResBlk, self).__init__()
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, h, w]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
""" :param x: [b, ch, h, w] :return: """
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# short cut.
# extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
# element-wise add:
out = self.extra(x) + out
return out
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
nn.BatchNorm2d(16)
)
# followed 4 blocks
# [b, 64, h, w] => [b, 128, h ,w]
self.blk1 = ResBlk(16, 32)
# [b, 128, h, w] => [b, 256, h, w]
self.blk2 = ResBlk(32, 64)
# # [b, 256, h, w] => [b, 512, h, w]
self.blk3 = ResBlk(64, 128)
# # [b, 512, h, w] => [b, 1024, h, w]
self.blk4 = ResBlk(128, 256)
self.outlayer = nn.Linear(256*10*10, 10)
def forward(self, x):
""" :param x: :return: """
x = F.relu(self.conv1(x))
# [b, 64, h, w] => [b, 1024, h, w]
x = self.blk1(x)
x = self.blk2(x)
x = self.blk3(x)
x = self.blk4(x)
# print(x.shape)
x = x.view(x.size(0), -1)
x = self.outlayer(x)
return x
def main():
blk = ResBlk(64, 128)
tmp = torch.randn(2, 64,32, 32)
out = blk(tmp)
print('blkk', out.shape)
model = ResNet18()
tmp = torch.randn(2, 3, 32, 32)
out = model(tmp)
print('resnet:', out.shape)
if __name__ == '__main__':
main()
This is the code written by the teacher , Don't post your own code if it's a little messy
The biggest feeling is CNN There is stride and padding after ,[b, chn, h,w], It's too messy It's easy to come out x And the next step to accept x Not right .
It mainly affects h,w
And then there was cnn Pick up fc Remember to level the back chn* H * W, namely
hold cnn Of [b, chn ,h ,w] Make it even [b, chnhw]
There is a key short cut
mistake
out = self.extra(x) + out
It's written in
out = self.extra(out) +x
It took two hours to find this problem , Still not familiar with the dimension transformation in the middle of the network ,
Yes short cut I don't understand well
from resnet_teacher import ResNet18
def main():
batchsz = 32
cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()
]), download=True)
cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)
cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()
]), download=True)
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)
x, label = iter(cifar_train).next()
print('x:', x.shape, 'label:', label.shape)
device = torch.device('cuda')
# model = Lenet5().to(device)
model = ResNet18()
criteon = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
print(model)
for epoch in range(1000):
model.train()
for batchidx, (x, label) in enumerate(cifar_train):
# [b, 3, 32, 32]
# [b]
#x, label = x.to(device), label.to(device)
logits = model(x)
# logits: [b, 10]
# label: [b]
# loss: tensor scalar
loss = criteon(logits, label)
# backprop
optimizer.zero_grad()
loss.backward()
optimizer.step()
#
print(epoch, 'loss:', loss.item())
model.eval()
with torch.no_grad():
# test
total_correct = 0
total_num = 0
for x, label in cifar_test:
# [b, 3, 32, 32]
# [b]
#x, label = x.to(device), label.to(device)
# [b, 10]
logits = model(x)
# [b]
pred = logits.argmax(dim=1)
# [b] vs [b] => scalar tensor
correct = torch.eq(pred, label).float().sum().item()
total_correct += correct
total_num += x.size(0)
# print(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
边栏推荐
- LeetCode 715. Range module
- Summary of methods for counting the number of file lines in shell scripts
- Method of intercepting string in shell
- On the setting of global variable position in C language
- We have a common name, XX Gong
- C language file reading and writing
- Gaussian elimination acwing 883 Gauss elimination for solving linear equations
- 20220630学习打卡
- dried food! What problems will the intelligent management of retail industry encounter? It is enough to understand this article
- 树形DP AcWing 285. 没有上司的舞会
猜你喜欢
Vs2019 configuration opencv3 detailed graphic tutorial and implementation of test code
The "booster" of traditional office mode, Building OA office system, was so simple!
一个优秀速开发框架是什么样的?
【点云处理之论文狂读经典版10】—— PointCNN: Convolution On X-Transformed Points
LeetCode 515. 在每个树行中找最大值
Introduction to the basic application and skills of QT
LeetCode 508. 出现次数最多的子树元素和
DOM render mount patch responsive system
Parameters of convolutional neural network
On the setting of global variable position in C language
随机推荐
Severity code description the project file line prohibits the display of status error c2440 "initialization": unable to convert from "const char [31]" to "char *"
我們有個共同的名字,XX工
Introduction to the usage of getopts in shell
【点云处理之论文狂读经典版11】—— Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling
State compression DP acwing 291 Mondrian's dream
Internet Protocol learning record
教育信息化步入2.0,看看JNPF如何帮助教师减负,提高效率?
LeetCode 532. 数组中的 k-diff 数对
Parameters of convolutional neural network
Solution of 300ms delay of mobile phone
【点云处理之论文狂读前沿版12】—— Adaptive Graph Convolution for Point Cloud Analysis
求组合数 AcWing 885. 求组合数 I
Methods of checking ports according to processes and checking processes according to ports
树形DP AcWing 285. 没有上司的舞会
Vscode connect to remote server
Sword finger offer II 091 Paint the house
CSDN markdown editor help document
Format - C language project sub file
DOM render mount patch responsive system
剑指 Offer II 091. 粉刷房子