当前位置:网站首页>Tensorflow2 keras 分类模型
Tensorflow2 keras 分类模型
2022-07-02 06:29:00 【图图是只猫】
from pickletools import optimize
from pyexpat import model
from re import X
from tkinter import Y
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
from sklearn import metrics
import tensorflow as tf
from tensorflow import keras
#数据集
fashion_mnist = keras.datasets.fashion_mnist
#训练集和测试集
(x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data()
#验证集和训练集
x_valid,x_train = x_train_all[:5000],x_train_all[5000:]
y_valid,y_train = y_train_all[:5000],y_train_all[5000:]
# 训练集归一化
# x = (x - u)/ std :x - 均值 / 方差
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1,1)).reshape(-1,28,28)
x_valid_scaled = scaler.transform(x_valid.astype(np.float32).reshape(-1,1)).reshape(-1,28,28)
x_test_scaled = scaler.transform(x_test.astype(np.float32).reshape(-1,1)).reshape(-1,28,28)
def show_single_image(img_arr):
plt.imshow(img_arr,cmap="binary")
plt.show()
def show_imgs(n_rows,n_cols,x_data,y_data,class_names):
assert len(x_data) == len(y_data)
assert n_rows * n_cols < len(x_data)
#指定图像宽高 英尺单位
plt.figure(figsize=(n_cols * 1.4,n_rows * 1.6))
for row in range(n_rows):
for col in range(n_cols):
index = n_cols * row + col
#创建单个子图
plt.subplot(n_rows,n_cols,index + 1)
plt.imshow(x_data[index],cmap="binary",interpolation='nearest')
plt.axis('off')
plt.title(class_names[y_data[index]])
plt.show()
class_names = ['T-shirt','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle boot']
#show_imgs(3,5,x_train,y_train,class_names)
#添加模型 sequential线性堆叠模型
model = keras.models.Sequential()
#将28*28的矩阵展平为一维向量
model.add(keras.layers.Flatten(input_shape=[28,28]))
#Dense:每一层的输入来自前面所有层的输出->解决梯度消失的问题
#梯度消失和梯度爆炸:计算深度增加导致求导数据持续过低(0-0.25)或过高(1)
model.add(keras.layers.Dense(300,activation="relu"))
#此100单元与300单元做全联接
#relu:y = max(0,x) 大于0返回x
#softmax:将向量变成概率分布 x = [x1,x2,x3]
# y = [e^x1/sum, e^x2/sum,e^x3/sum] sum = e^x1/sum+e^x2/sum+e^x3/sum
model.add(keras.layers.Dense(100,activation="relu"))
model.add(keras.layers.Dense(10,activation="softmax"))
# sparse_categorical_crossentropy: y是一个数值需要将 y->one_hot->[] 转化为向量,如果是向量需要用categorical_crossentropy
# optimize 模型调整方法
# metrics
# optimizer="adam" sgd ->梯度优化算法
model.compile(loss="sparse_categorical_crossentropy",optimizer="adam", metrics = ["accuracy"])
#模型架构显示
#架构参数:
#1层 [None,784] [样本数*784]
#2层 第一层转化为 [None,300] :[none,784] * w + b -> [none,300] w.shape[784,300], b=[300]
model.summary()
#结果验证
history = model.fit(x_train_scaled,y_train,epochs=10,validation_data=(x_valid_scaled,y_valid))
# history.history
#结果估值
print(model.evaluate(x_test_scaled,y_test))
#结果可视化
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
边栏推荐
- HCIA - application layer
- C language custom type enumeration, Union (clever use of enumeration, calculation of union size)
- [blackmail virus data recovery] suffix Crylock blackmail virus
- c语言自定义类型枚举,联合(枚举的巧妙使用,联合体大小的计算)
- Use Wireshark to grab TCP three handshakes
- Openfeign facile à utiliser
- Minecraft安装资源包
- Pclpy projection filter -- projection of point cloud to cylinder
- IP protocol and IP address
- Matlab-其它
猜你喜欢
随机推荐
How to uninstall SQL Server cleanly
sqli-labs第2关
Makefile Fundamentals
ARP and ARP Spoofing
旋转链表(图解说明)
Detailed explanation of NIN network
Pointer initialization
Vs code configuration problem
[blackmail virus data recovery] suffix Crylock blackmail virus
Service de groupe minecraft
Minecraft群组服开服
D interface and domain problems
路由基础—动态路由
What is SQL injection
Mutex
CarSim learning experience - rough translation 1
sqli-labs第1关
Sqli labs level 12
Flex layout
Matlab-其它









