当前位置:网站首页>通俗理解时域采样与频域延拓
通俗理解时域采样与频域延拓
2022-06-12 08:41:00 【ZEERO~】
讲连续信号 x a ( t ) x_{a}(t) xa(t)与冲激串信号 p s ( t ) p_{s}(t) ps(t)相乘,即可得到离散时间信号 x ( n ) x(n) x(n),因此,有如下公式:
x ( n ) = x a ( t ) ∣ t = n T s = x a ( t ) p s ( t ) = x a ( t ) ∑ n = − ∞ ∞ δ ( t − n T s ) x(n)=x_{a}(t) |_{t=nT_{s}}=x_{a}(t)p_{s}(t)=x_{a}(t)\sum_{n=-\infty}^{\infty}\delta(t-nT_{s}) x(n)=xa(t)∣t=nTs=xa(t)ps(t)=xa(t)n=−∞∑∞δ(t−nTs)
采样周期为 T s T_{s} Ts,我们用 X a ( j Ω ) X_{a}(j\Omega) Xa(jΩ)来表示模拟信号 x a ( t ) x_{a}(t) xa(t)的频谱,用 X ( e j w ) X(e^{jw}) X(ejw)来表示离散信号 x ( n ) x(n) x(n)的频谱,根据Fourier变换公式,
X a ( j Ω ) = ∫ − ∞ ∞ x a ( t ) e − j Ω t d t X ( e j w ) = ∑ n = − ∞ ∞ x ( n ) e − j w n X_{a}(j\Omega)=\int_{-\infty}^{\infty}x_{a}(t)e^{-j\Omega t}dt\\X(e^{jw})=\sum_{n=-\infty}^{\infty}x(n)e^{-jwn} Xa(jΩ)=∫−∞∞xa(t)e−jΩtdtX(ejw)=n=−∞∑∞x(n)e−jwn
示意图如下所示:
上图中,我们假设 x a ( t ) x_{a}(t) xa(t)为带限信号,就是频带有限长的信号,我们希望能找出 X a ( j Ω ) X_{a}(j\Omega) Xa(jΩ)与 X ( e j w ) X(e^{jw}) X(ejw)之间的区别和联系。
我们知道,离散信号可以视为一种特殊的连续信号,将其Fourier变换记为 X s ( j Ω ) X_{s}(j\Omega) Xs(jΩ)。由模拟频率与数字频率的关系, X s ( j Ω ) X_{s}(j\Omega) Xs(jΩ)与 X ( e j w ) X(e^{jw}) X(ejw)之间的关系为
X ( e j w ) = X s ( j Ω ) ∣ Ω = w / T s X(e^{jw})=X_{s}(j\Omega) |_{\Omega =w/T_{s}} X(ejw)=Xs(jΩ)∣Ω=w/Ts
有关模拟频率和数字频率的关系,看这篇文章模拟频率与数字频率之间的关系。
我们接着往下讲,我们都知道,时域相乘等于频域的卷积,由数学公式表示
X s ( j Ω ) = X a ( j Ω ) ∗ P s ( j Ω ) X_{s}(j\Omega)=X_{a}(j\Omega)*P_{s}(j\Omega) Xs(jΩ)=Xa(jΩ)∗Ps(jΩ)
,其中 P s ( j Ω ) P_{s}(j\Omega) Ps(jΩ)为冲激信号串的Fourier变换。
参考资料
《学以致用:深入浅出数字信号处理》 江志宏
边栏推荐
- Handling abnormal data
- 三国杀周边--------猪国杀题解
- API handling Android security distance
- This article is required for the popularization of super complete MES system knowledge
- Detailed explanation of private, public and interface attributes in cmake
- Loading circling effect during loading
- 2022.6.11-----leetcode. nine hundred and twenty-six
- Display the remaining valid days according to the valid period
- Hands on learning and deep learning -- a brief introduction to softmax regression
- 动态线段树leetcode.699
猜你喜欢

Hands on learning and deep learning -- Realization of linear regression from scratch

Loading font component loading effect

Model Trick | CVPR 2022 Oral - Stochastic Backpropagation A Memory Efficient Strategy

(p15-p16) optimization of the right angle bracket of the template and the default template parameters of the function template

报错:文件夹在另一个程序中打开无法删除怎么办
![[advanced pointer I] character array & array pointer & pointer array](/img/ea/150b2162e4e1641eee7e852935d101.png)
[advanced pointer I] character array & array pointer & pointer array

Vision transformer | arXiv 2205 - TRT vit vision transformer for tensorrt

ctfshow web 1-2

svg中viewbox图解分析

Handling abnormal data
随机推荐
MPLS的原理与配置
Difference between binary GB and gib
Is it really expensive for enterprises to launch MES software?
In the era of intelligent manufacturing, how do enterprises carry out digital transformation
Encapsulate the amount input box component.
Code generation tool Autocode for XML Publishing
ctfshow web3
Vision transformer | arXiv 2205 - TRT vit vision transformer for tensorrt
Convert spaces to < br / > newline labels
根据有效期显示距离当前还剩多少天有效期
FDA reviewers say Moderna covid vaccine is safe and effective for children under 5 years of age
What exactly is APS? You will know after reading the article
JVM learning notes: garbage collection mechanism
Production scheduling status of manufacturing enterprises and solutions of APS system
ASP. Net project development practice introduction_ Item VI_ Error report (summary of difficult problems when writing the project)
Beidou satellite navigation system foundation part 1
Seurat package addmodulescore is used for bulk RNA SEQ data
API handling Android security distance
The newline character with in the string is converted to an array
MSTP的配置与原理