当前位置:网站首页>Brief introduction of TF flags

Brief introduction of TF flags

2020-11-06 01:22:00 Elementary school students in IT field

1、TF flags An introduction to the

1、flags Can help us through the command line to dynamically change the parameters in the code .Tensorflow Use flags How to define command line arguments .ML There's a lot of need for tuning The super parameter of , So this method , To meet the need for a flexible way to adjust some parameters of the code
(1)、 such as , In this py In file , First, some parameters are defined , Then save the parameters to variables FLAGS in , Equivalent to assignment , When these parameters are called later, they are used directly FLAGS Parameters can be
(2)、 There are three basic parameter types flags.DEFINE_integer、flags.DEFINE_float、flags.DEFINE_boolean.
(3)、 The first is the parameter name , The second parameter is the default value , The third is parameter description

2、 Using process

# First step , call flags = tf.app.flags, Define parameter name , And the initial value can be given 、 Parameter description
# The second step ,flags Parameters are assigned directly
# The third step , function tf.app.run()

FLAGS = tf.flags.FLAGS

tf.flags.DEFINE_string('name', 'default', 'name of the model')
tf.flags.DEFINE_integer('num_seqs', 100, 'number of seqs in one batch')
tf.flags.DEFINE_integer('num_steps', 100, 'length of one seq')
tf.flags.DEFINE_integer('lstm_size', 128, 'size of hidden state of lstm')
tf.flags.DEFINE_integer('num_layers', 2, 'number of lstm layers')
tf.flags.DEFINE_boolean('use_embedding', False, 'whether to use embedding')
tf.flags.DEFINE_integer('embedding_size', 128, 'size of embedding')
tf.flags.DEFINE_float('learning_rate', 0.001, 'learning_rate')
tf.flags.DEFINE_float('train_keep_prob', 0.5, 'dropout rate during training')
tf.flags.DEFINE_string('input_file', '', 'utf8 encoded text file')
tf.flags.DEFINE_integer('max_steps', 100000, 'max steps to train')
tf.flags.DEFINE_integer('save_every_n', 1000, 'save the model every n steps')
tf.flags.DEFINE_integer('log_every_n', 10, 'log to the screen every n steps')
tf.flags.DEFINE_integer('max_vocab', 3500, 'max char number')

Examples are as follows :

import tensorflow as tf
# Take part of the above code for experiment 
tf.flags.DEFINE_integer('num_seqs', 100, 'number of seqs in one batch')
tf.flags.DEFINE_integer('num_steps', 100, 'length of one seq')
tf.flags.DEFINE_integer('lstm_size', 128, 'size of hidden state of lstm')

# adopt print() Determine the function of the following 
FLAGS = tf.flags.FLAGS #FLAGS Save data for command line arguments 
FLAGS._parse_flags() # Parse it into a dictionary and store it in FLAGS.__flags in 
print(FLAGS.__flags)

print(FLAGS.num_seqs)

print("\nParameters:")
for attr, value in sorted(FLAGS.__flags.items()):
    print("{}={}".format(attr.upper(), value))
print("")

You can refer to : Related solutions

 WeChat ID

版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢