当前位置:网站首页>The use of pytorch: temperature prediction using neural networks
The use of pytorch: temperature prediction using neural networks
2022-08-05 00:59:00 【The romance of cherry blossoms】
1.首先,Let's take a look at what's going on with the data
数据表中
- year,moth,day,week分别表示的具体的时间
- temp_2:前天的最高温度值
- temp_1:昨天的最高温度值
- average:在历史中,每年这一天的平均最高温度值
- actual:这就是我们的标签值了,当天的真实最高温度
- friend:这一列可能是凑热闹的,你的朋友猜测的可能值,whatever it is
Year, month and day are all characteristics of time,We convert it to time type data,To facilitate our drawing display
# 处理时间数据
import datetime
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
We then use the graph to visually display the data:
# 准备画图
# 指定默认风格
plt.style.use('fivethirtyeight')
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
plt.tight_layout(pad=2)
Convert text data to one-hot encoding:
Remove the label column from the feature:
# 标签
labels = np.array(features['actual'])
# 在特征中去掉标签
features= features.drop('actual', axis = 1)
# 名字单独保存一下,以备后患
feature_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
对数据进行标准化处理:
2.构建网络模型
包括:权重参数初始化、计算隐层、加入激活函数、预测结果、计算损失、返向传播计算、更新参数.另外,Remember to clear the gradient every iteration,否则梯度会累加
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
learning_rate = 0.001
losses = []
for i in range(1000):
# 计算隐层
hidden = x.mm(weights) + biases
# 加入激活函数
hidden = torch.relu(hidden)
# 预测结果
predictions = hidden.mm(weights2) + biases2
# 通计算损失
loss = torch.mean((predictions - y) ** 2)
losses.append(loss.data.numpy())
# 打印损失值
if i % 100 == 0:
print('loss:', loss)
#返向传播计算
loss.backward()
#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
# 每次迭代都得记得清空
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()
3.Simpler network model
直接使用nn.Model
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
训练网络:
# 训练网络
losses = []
for i in range(1000):
batch_loss = []
# MINI-Batch方法来进行训练
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
prediction = my_nn(xx)
loss = cost(prediction, yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())
# 打印损失
if i % 100==0:
losses.append(np.mean(batch_loss))
print(i, np.mean(batch_loss))
4.预训练结果
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()
# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
边栏推荐
- 测试工作这么难找吗?今年32,失业2个月,大龄测试工程师接下来该拿什么养家?
- day14--postman接口测试
- 5.PCIe官方示例
- Countdown to 1 day!From August 2nd to 4th, I will talk with you about open source and employment!
- pytorch的使用:卷积神经网络模块
- Gartner Hype Cycle:超融合技术将在2年内到达“生产力成熟期”
- Opencv——视频跳帧处理
- JUC thread pool (1): FutureTask use
- 深度学习训练前快速批量修改数据集中的图片名
- Theory of Software Fundamentals
猜你喜欢
金九银十面试跳槽季;你准备好了吗?
Kubernetes 网络入门
蓝牙Mesh系统开发四 ble mesh网关节点管理
阶段性测试完成后,你进行缺陷分析了么?
ora-01105 ora-03175
Binary tree [full solution] (C language)
After the staged testing is complete, have you performed defect analysis?
手把手基于YOLOv5定制实现FacePose之《YOLO结构解读、YOLO数据格式转换、YOLO过程修改》
【TA-霜狼_may-《百人计划》】图形4.3 实时阴影介绍
5. PCIe official example
随机推荐
2022 Hangzhou Electric Power Multi-School Session 3 Question L Two Permutations
Software Testing Interview Questions: What's the Difference Between Manual Testing and Automated Testing?
tiup status
Opencv——视频跳帧处理
DDOS攻击真的是无解吗?不!
蓝牙Mesh系统开发五 ble mesh设备增加与移除
tiup telemetry
BC(转)[js]js计算两个时间相差天数
Binary tree [full solution] (C language)
pytorch的使用:使用神经网络进行气温预测
方法重写与Object类
第十一章 开关级建模
JUC thread pool (1): FutureTask use
软件测试技术之最有效的七大性能测试技术
Software testing interview questions: test life cycle, the test process is divided into several stages, and the meaning of each stage and the method used?
深度学习原理学习小结 - Self-Attention/Transformer
Software Testing Interview Questions: About Automated Testing Tools?
2021年11月网络规划设计师上午题知识点(上)
Software testing interview questions: Have you used some tools for software defect (Bug) management in your past software testing work? If so, please describe the process of software defect (Bug) trac
Lattice PCIe 学习 1