当前位置:网站首页>[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
2022-07-03 18:07:00 【Programmer community】
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
One 、 Positive integer split summary
Positive integer split , You need to give Number after splitting ,
The number of each split , Can have a corresponding Generate function items ,
Every Generate the item of the function
y
y
y Number of power terms , With this The number and type of values of the number to be split equally ,
Such as : A number that is split
a
1
a_1
a1 , Its It can take
0
,
1
,
2
0,1,2
0,1,2 Three values , So the corresponding Generate the item of the function
y
y
y Number of power terms Yes
3
3
3 It's worth , by
(
y
a
1
)
0
+
(
y
a
1
)
1
+
(
y
a
1
)
2
(y^{a_1})^0 + (y^{a_1})^1 + (y^{a_1})^2
(ya1)0+(ya1)1+(ya1)2 ,
In the generated function item The bottom is
y
By
Demolition
branch
Of
Count
y^{ The number to be split }
y By Demolition branch Of Count , A sub idempotent is The positive integer Possible values , Item in
y
y
y The number of power components Namely The Positive integer The number of types of values ;
Positive integer split , Allow repetition And No repetition , The difference is that Split integer The number of occurrences of ,
- If No repetition , That should be split Positive integer Can only appear
0
,
1
0,1
0,1 Time ;
- If Allow repetition , Then the positive integer can appear
0
,
1
,
2
,
⋯
0,1,2, \cdots
0,1,2,⋯ Infinite times ;
Positive integer split generator :
- Number of generated function items : Namely The number of positive integer types after splitting ; It can be divided into
2
,
4
,
8
2,4,8
2,4,8 Three numbers , So it's the multiplication of three generator terms ;
- Generate... In the function item
y
y
0
,
1
0,1
0,1 Time , The number of representative value types is
2
2
2 ;
y Power number : Corresponding A positive integer after splitting Number of value types ; A split integer may appear
- Generate... In the function item
y
y
y
Demolition
branch
after
Of
just
whole
Count
y^{ A positive integer after splitting }
y Demolition branch after Of just whole Count , A positive integer after splitting is
5
5
5 , So the bottom is
y
5
y^5
y5 ;
y Power base :
- Generate... In the function item
y
y
5
5
5 , So the bottom is
y
5
y^5
y5 , once , The corresponding item is
(
y
5
)
1
(y^5)^1
(y5)1
y The next power : Of a positive integer after splitting Number of values ; A positive integer after splitting is
Two 、 Positive integer split example
Prove any Positive integer Binary representation is unique ;
The above problem can be equivalent to , take Arbitrary positive integer , Fine Break it down into
2
2
2 The sum of the powers of , also Duplicate elements are not allowed ;
2
2
2 To the power of :
2
0
,
2
1
,
2
2
,
2
3
,
⋯
2^0, 2^1, 2^2, 2^3 , \cdots
20,21,22,23,⋯
Because repetition is not allowed , So every
2
2
2 The next power The number of , Can only be
0
,
1
0,1
0,1 Two cases ;
According to the model of positive integer splitting , Write a generating function :
2
0
2^0
20 Corresponding generating function items : The bottom is
y
2
0
=
y
y^{2^0} = y
y20=y , Value
0
,
1
0, 1
0,1 , Corresponding The generated function item is
y
0
+
y
1
=
1
+
y
y^0 + y^1 = 1+ y
y0+y1=1+y
2
1
2^1
21 Corresponding generating function items : The bottom is
y
2
1
=
y
2
y^{2^1} = y^2
y21=y2 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
2
)
0
+
(
y
2
)
1
=
1
+
y
2
(y^2)^0 + (y^2)^1 = 1+ y^2
(y2)0+(y2)1=1+y2
2
2
2^2
22 Corresponding generating function items : The bottom is
y
2
2
=
y
4
y^{2^2} = y^4
y22=y4 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
4
)
0
+
(
y
4
)
1
=
1
+
y
4
(y^4)^0 + (y^4)^1 = 1+ y^4
(y4)0+(y4)1=1+y4
2
3
2^3
23 Corresponding generating function items : The bottom is
y
2
3
=
y
8
y^{2^3} = y^8
y23=y8 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
8
)
0
+
(
y
8
)
1
=
1
+
y
8
(y^8)^0 + (y^8)^1 = 1+ y^8
(y8)0+(y8)1=1+y8
⋮
\vdots
⋮
The complete generating function is :
G
(
x
)
=
(
1
+
y
)
(
1
+
y
2
)
(
1
+
y
4
)
(
1
+
y
8
)
⋯
G(x) = (1+ y)(1+ y^2)(1+ y^4)(1+ y^8)\cdots
G(x)=(1+y)(1+y2)(1+y4)(1+y8)⋯
Break down each of the above Generate function items :
1
+
y
=
1
−
y
2
1
−
y
1+ y= \cfrac{1-y^2}{1-y}
1+y=1−y1−y2
1
+
y
2
=
1
−
y
4
1
−
y
2
1+ y^2= \cfrac{1-y^4}{1-y^2}
1+y2=1−y21−y4
1
+
y
4
=
1
−
y
8
1
−
y
4
1+ y^4= \cfrac{1-y^8}{1-y^4}
1+y4=1−y41−y8
Substitute the above three equations into the generating function
G
(
x
)
G(x)
G(x) in ,
G
(
x
)
=
1
−
y
2
1
−
y
⋅
1
−
y
4
1
−
y
2
⋅
1
−
y
8
1
−
y
4
⋯
G(x) = \cfrac{1-y^2}{1-y} \cdot \cfrac{1-y^4}{1-y^2} \cdot \cfrac{1-y^8}{1-y^4} \cdots
G(x)=1−y1−y2⋅1−y21−y4⋅1−y41−y8⋯
=
1
1
−
y
\ \ \ \ \ \ \ \ \ \ = \cfrac{1}{1-y}
=1−y1
=
1
+
y
+
y
2
+
y
3
+
⋯
\ \ \ \ \ \ \ \ \ \ = 1 + y + y^2 + y^3 + \cdots
=1+y+y2+y3+⋯
The above generating function is
1
n
1^n
1n General formula Of the corresponding sequence Generating function ;
After the above generation function is expanded , The coefficient before each term is
1
1
1 , There is only one solution ;
边栏推荐
- Computer graduation design PHP sports goods online sales system website
- [tutorial] build your first application on coreos
- A. Odd Selection【BruteForce】
- Golang string (string) and byte array ([]byte) are converted to each other
- Three gradient descent methods and code implementation
- Valentine's day, send you a little red flower~
- Talk about the design and implementation logic of payment process
- SDNUOJ1015
- Deops入门
- Unsafe类的使用
猜你喜欢

Research Report on investment trends and development planning of China's thermal insulation material industry, 2022-2028

AcWing 271. 杨老师的照相排列【多维DP】

The third day of writing C language by Yabo people

Getting started with deops

Talk about the design and implementation logic of payment process

Computer graduation project PHP library book borrowing management system

Redis core technology and practice - learning notes (IX): slicing cluster

MySQL grouping query

As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation

win32:堆破坏的dump文件分析
随机推荐
Talk about the design and implementation logic of payment process
Image 24 bits de profondeur à 8 bits de profondeur
Global and Chinese health care OEM and ODM market status survey and investment planning recommendations report 2022-2028
Talk about the design and implementation logic of payment process
Website with JS doesn't work in IE9 until the Developer Tools is activated
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
PHP MySQL Update
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
Fedora 21 installs lamp host server
[set theory] order relation: summary (partial order relation | partial order set | comparable | strictly less than | covering | hasto | total order relation | quasi order relation | partial order rela
PHP MySQL where clause
An academic paper sharing and approval system based on PHP for computer graduation design
Solve the problem of inaccurate network traffic monitored by ZABBIX with SNMP
Closure and closure function
[combinatorics] generating function (summation property)
Gear2021 monthly update - December
Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
Fedora 21 安装 LAMP 主机服务器
Supervisor monitors gearman tasks
Introduction to PHP MySQL