当前位置:网站首页>[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
2022-07-03 18:07:00 【Programmer community】
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
One 、 Positive integer split summary
Positive integer split , You need to give Number after splitting ,
The number of each split , Can have a corresponding Generate function items ,
Every Generate the item of the function
y
y
y Number of power terms , With this The number and type of values of the number to be split equally ,
Such as : A number that is split
a
1
a_1
a1 , Its It can take
0
,
1
,
2
0,1,2
0,1,2 Three values , So the corresponding Generate the item of the function
y
y
y Number of power terms Yes
3
3
3 It's worth , by
(
y
a
1
)
0
+
(
y
a
1
)
1
+
(
y
a
1
)
2
(y^{a_1})^0 + (y^{a_1})^1 + (y^{a_1})^2
(ya1)0+(ya1)1+(ya1)2 ,
In the generated function item The bottom is
y
By
Demolition
branch
Of
Count
y^{ The number to be split }
y By Demolition branch Of Count , A sub idempotent is The positive integer Possible values , Item in
y
y
y The number of power components Namely The Positive integer The number of types of values ;
Positive integer split , Allow repetition And No repetition , The difference is that Split integer The number of occurrences of ,
- If No repetition , That should be split Positive integer Can only appear
0
,
1
0,1
0,1 Time ;
- If Allow repetition , Then the positive integer can appear
0
,
1
,
2
,
⋯
0,1,2, \cdots
0,1,2,⋯ Infinite times ;
Positive integer split generator :
- Number of generated function items : Namely The number of positive integer types after splitting ; It can be divided into
2
,
4
,
8
2,4,8
2,4,8 Three numbers , So it's the multiplication of three generator terms ;
- Generate... In the function item
y
y
0
,
1
0,1
0,1 Time , The number of representative value types is
2
2
2 ;
y Power number : Corresponding A positive integer after splitting Number of value types ; A split integer may appear
- Generate... In the function item
y
y
y
Demolition
branch
after
Of
just
whole
Count
y^{ A positive integer after splitting }
y Demolition branch after Of just whole Count , A positive integer after splitting is
5
5
5 , So the bottom is
y
5
y^5
y5 ;
y Power base :
- Generate... In the function item
y
y
5
5
5 , So the bottom is
y
5
y^5
y5 , once , The corresponding item is
(
y
5
)
1
(y^5)^1
(y5)1
y The next power : Of a positive integer after splitting Number of values ; A positive integer after splitting is
Two 、 Positive integer split example
Prove any Positive integer Binary representation is unique ;
The above problem can be equivalent to , take Arbitrary positive integer , Fine Break it down into
2
2
2 The sum of the powers of , also Duplicate elements are not allowed ;
2
2
2 To the power of :
2
0
,
2
1
,
2
2
,
2
3
,
⋯
2^0, 2^1, 2^2, 2^3 , \cdots
20,21,22,23,⋯
Because repetition is not allowed , So every
2
2
2 The next power The number of , Can only be
0
,
1
0,1
0,1 Two cases ;
According to the model of positive integer splitting , Write a generating function :
2
0
2^0
20 Corresponding generating function items : The bottom is
y
2
0
=
y
y^{2^0} = y
y20=y , Value
0
,
1
0, 1
0,1 , Corresponding The generated function item is
y
0
+
y
1
=
1
+
y
y^0 + y^1 = 1+ y
y0+y1=1+y
2
1
2^1
21 Corresponding generating function items : The bottom is
y
2
1
=
y
2
y^{2^1} = y^2
y21=y2 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
2
)
0
+
(
y
2
)
1
=
1
+
y
2
(y^2)^0 + (y^2)^1 = 1+ y^2
(y2)0+(y2)1=1+y2
2
2
2^2
22 Corresponding generating function items : The bottom is
y
2
2
=
y
4
y^{2^2} = y^4
y22=y4 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
4
)
0
+
(
y
4
)
1
=
1
+
y
4
(y^4)^0 + (y^4)^1 = 1+ y^4
(y4)0+(y4)1=1+y4
2
3
2^3
23 Corresponding generating function items : The bottom is
y
2
3
=
y
8
y^{2^3} = y^8
y23=y8 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
8
)
0
+
(
y
8
)
1
=
1
+
y
8
(y^8)^0 + (y^8)^1 = 1+ y^8
(y8)0+(y8)1=1+y8
⋮
\vdots
⋮
The complete generating function is :
G
(
x
)
=
(
1
+
y
)
(
1
+
y
2
)
(
1
+
y
4
)
(
1
+
y
8
)
⋯
G(x) = (1+ y)(1+ y^2)(1+ y^4)(1+ y^8)\cdots
G(x)=(1+y)(1+y2)(1+y4)(1+y8)⋯
Break down each of the above Generate function items :
1
+
y
=
1
−
y
2
1
−
y
1+ y= \cfrac{1-y^2}{1-y}
1+y=1−y1−y2
1
+
y
2
=
1
−
y
4
1
−
y
2
1+ y^2= \cfrac{1-y^4}{1-y^2}
1+y2=1−y21−y4
1
+
y
4
=
1
−
y
8
1
−
y
4
1+ y^4= \cfrac{1-y^8}{1-y^4}
1+y4=1−y41−y8
Substitute the above three equations into the generating function
G
(
x
)
G(x)
G(x) in ,
G
(
x
)
=
1
−
y
2
1
−
y
⋅
1
−
y
4
1
−
y
2
⋅
1
−
y
8
1
−
y
4
⋯
G(x) = \cfrac{1-y^2}{1-y} \cdot \cfrac{1-y^4}{1-y^2} \cdot \cfrac{1-y^8}{1-y^4} \cdots
G(x)=1−y1−y2⋅1−y21−y4⋅1−y41−y8⋯
=
1
1
−
y
\ \ \ \ \ \ \ \ \ \ = \cfrac{1}{1-y}
=1−y1
=
1
+
y
+
y
2
+
y
3
+
⋯
\ \ \ \ \ \ \ \ \ \ = 1 + y + y^2 + y^3 + \cdots
=1+y+y2+y3+⋯
The above generating function is
1
n
1^n
1n General formula Of the corresponding sequence Generating function ;
After the above generation function is expanded , The coefficient before each term is
1
1
1 , There is only one solution ;
边栏推荐
- 聊聊支付流程的設計與實現邏輯
- Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries
- Baiwen.com 7 days Internet of things smart home learning experience punch in the next day
- Design limitations of structure type (struct)
- [combinatorics] generating function (example of using generating function to solve the number of solutions of indefinite equation)
- Solve the problem of inaccurate network traffic monitored by ZABBIX with SNMP
- supervisor监控Gearman任务
- The third day of writing C language by Yabo people
- Bidding procurement scheme management of Oracle project management system
- Redis core technology and practice - learning notes (11): why not just string
猜你喜欢
Research Report on investment trends and development planning of China's thermal insulation material industry, 2022-2028
(9) Opencv Canny edge detection
Leetcode 108 converts an ordered array into a binary search tree -- recursive method
Redis core technology and practice - learning notes (VII) sentinel mechanism
Computer graduation project PHP library book borrowing management system
MySQL has been stopped in the configuration interface during installation
STM32实现74HC595控制
聊聊支付流程的設計與實現邏輯
Baiwen.com 7 days Internet of things smart home learning experience punch in the next day
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
随机推荐
PHP MySQL Update
PHP MySQL inserts data
Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries
[Tongxin UOS] scanner device management driver installation
Distributed task distribution framework gearman
Write a program to process a list container of string type. Find a special value in the container 9.27: and delete it if found. Rewrite the above procedure with deque container.
[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
Bidding procurement scheme management of Oracle project management system
Talk about the design and implementation logic of payment process
Golang string (string) and byte array ([]byte) are converted to each other
Redis core technology and practice - learning notes (VII) sentinel mechanism
Draw some simple graphics with MFC
Valentine's day, send you a little red flower~
统计图像中各像素值的数量
Global and Chinese pediatric palliative care drug market development research and investment planning recommendations report 2022-2028
AcWing 271. 杨老师的照相排列【多维DP】
WebView module manages the application window interface to realize the logical control and management operation of multiple windows (Part 1)
How to draw non overlapping bubble chart in MATLAB
Win32: dump file analysis of heap corruption
Analyse ArrayList 3: suppression d'éléments