当前位置:网站首页>[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
2022-07-03 18:07:00 【Programmer community】
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
One 、 Positive integer split summary
Positive integer split , You need to give Number after splitting ,
The number of each split , Can have a corresponding Generate function items ,
Every Generate the item of the function
y
y
y Number of power terms , With this The number and type of values of the number to be split equally ,
Such as : A number that is split
a
1
a_1
a1 , Its It can take
0
,
1
,
2
0,1,2
0,1,2 Three values , So the corresponding Generate the item of the function
y
y
y Number of power terms Yes
3
3
3 It's worth , by
(
y
a
1
)
0
+
(
y
a
1
)
1
+
(
y
a
1
)
2
(y^{a_1})^0 + (y^{a_1})^1 + (y^{a_1})^2
(ya1)0+(ya1)1+(ya1)2 ,
In the generated function item The bottom is
y
By
Demolition
branch
Of
Count
y^{ The number to be split }
y By Demolition branch Of Count , A sub idempotent is The positive integer Possible values , Item in
y
y
y The number of power components Namely The Positive integer The number of types of values ;
Positive integer split , Allow repetition And No repetition , The difference is that Split integer The number of occurrences of ,
- If No repetition , That should be split Positive integer Can only appear
0
,
1
0,1
0,1 Time ;
- If Allow repetition , Then the positive integer can appear
0
,
1
,
2
,
⋯
0,1,2, \cdots
0,1,2,⋯ Infinite times ;
Positive integer split generator :
- Number of generated function items : Namely The number of positive integer types after splitting ; It can be divided into
2
,
4
,
8
2,4,8
2,4,8 Three numbers , So it's the multiplication of three generator terms ;
- Generate... In the function item
y
y
0
,
1
0,1
0,1 Time , The number of representative value types is
2
2
2 ;
y Power number : Corresponding A positive integer after splitting Number of value types ; A split integer may appear
- Generate... In the function item
y
y
y
Demolition
branch
after
Of
just
whole
Count
y^{ A positive integer after splitting }
y Demolition branch after Of just whole Count , A positive integer after splitting is
5
5
5 , So the bottom is
y
5
y^5
y5 ;
y Power base :
- Generate... In the function item
y
y
5
5
5 , So the bottom is
y
5
y^5
y5 , once , The corresponding item is
(
y
5
)
1
(y^5)^1
(y5)1
y The next power : Of a positive integer after splitting Number of values ; A positive integer after splitting is
Two 、 Positive integer split example
Prove any Positive integer Binary representation is unique ;
The above problem can be equivalent to , take Arbitrary positive integer , Fine Break it down into
2
2
2 The sum of the powers of , also Duplicate elements are not allowed ;
2
2
2 To the power of :
2
0
,
2
1
,
2
2
,
2
3
,
⋯
2^0, 2^1, 2^2, 2^3 , \cdots
20,21,22,23,⋯
Because repetition is not allowed , So every
2
2
2 The next power The number of , Can only be
0
,
1
0,1
0,1 Two cases ;
According to the model of positive integer splitting , Write a generating function :
2
0
2^0
20 Corresponding generating function items : The bottom is
y
2
0
=
y
y^{2^0} = y
y20=y , Value
0
,
1
0, 1
0,1 , Corresponding The generated function item is
y
0
+
y
1
=
1
+
y
y^0 + y^1 = 1+ y
y0+y1=1+y
2
1
2^1
21 Corresponding generating function items : The bottom is
y
2
1
=
y
2
y^{2^1} = y^2
y21=y2 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
2
)
0
+
(
y
2
)
1
=
1
+
y
2
(y^2)^0 + (y^2)^1 = 1+ y^2
(y2)0+(y2)1=1+y2
2
2
2^2
22 Corresponding generating function items : The bottom is
y
2
2
=
y
4
y^{2^2} = y^4
y22=y4 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
4
)
0
+
(
y
4
)
1
=
1
+
y
4
(y^4)^0 + (y^4)^1 = 1+ y^4
(y4)0+(y4)1=1+y4
2
3
2^3
23 Corresponding generating function items : The bottom is
y
2
3
=
y
8
y^{2^3} = y^8
y23=y8 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
8
)
0
+
(
y
8
)
1
=
1
+
y
8
(y^8)^0 + (y^8)^1 = 1+ y^8
(y8)0+(y8)1=1+y8
⋮
\vdots
⋮
The complete generating function is :
G
(
x
)
=
(
1
+
y
)
(
1
+
y
2
)
(
1
+
y
4
)
(
1
+
y
8
)
⋯
G(x) = (1+ y)(1+ y^2)(1+ y^4)(1+ y^8)\cdots
G(x)=(1+y)(1+y2)(1+y4)(1+y8)⋯
Break down each of the above Generate function items :
1
+
y
=
1
−
y
2
1
−
y
1+ y= \cfrac{1-y^2}{1-y}
1+y=1−y1−y2
1
+
y
2
=
1
−
y
4
1
−
y
2
1+ y^2= \cfrac{1-y^4}{1-y^2}
1+y2=1−y21−y4
1
+
y
4
=
1
−
y
8
1
−
y
4
1+ y^4= \cfrac{1-y^8}{1-y^4}
1+y4=1−y41−y8
Substitute the above three equations into the generating function
G
(
x
)
G(x)
G(x) in ,
G
(
x
)
=
1
−
y
2
1
−
y
⋅
1
−
y
4
1
−
y
2
⋅
1
−
y
8
1
−
y
4
⋯
G(x) = \cfrac{1-y^2}{1-y} \cdot \cfrac{1-y^4}{1-y^2} \cdot \cfrac{1-y^8}{1-y^4} \cdots
G(x)=1−y1−y2⋅1−y21−y4⋅1−y41−y8⋯
=
1
1
−
y
\ \ \ \ \ \ \ \ \ \ = \cfrac{1}{1-y}
=1−y1
=
1
+
y
+
y
2
+
y
3
+
⋯
\ \ \ \ \ \ \ \ \ \ = 1 + y + y^2 + y^3 + \cdots
=1+y+y2+y3+⋯
The above generating function is
1
n
1^n
1n General formula Of the corresponding sequence Generating function ;
After the above generation function is expanded , The coefficient before each term is
1
1
1 , There is only one solution ;
边栏推荐
- Analysis report on production and marketing demand and investment forecast of China's PVC industry from 2021 to 2026
- PUT vs. POST for Uploading Files - RESTful API to be Built Using Zend Framework
- Implementation of Tetris in C language
- Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]
- Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
- [combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation)
- SSL / bio pour OpenSSL Get FD
- Ssl/bio of OpenSSL_ get_ fd
- PHP MySQL where clause
- Unsafe类的使用
猜你喜欢

How to expand the capacity of golang slice slice

Valentine's day, send you a little red flower~

Module 9 operation

Codeforces Round #803 (Div. 2) C. 3SUM Closure

STM32 realizes 74HC595 control

Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries

How do microservices aggregate API documents? This wave of operation is too good

Draw some simple graphics with MFC
![Golang string (string) and byte array ([]byte) are converted to each other](/img/41/20f445ef9de4adf2a2aa97828cb67f.jpg)
Golang string (string) and byte array ([]byte) are converted to each other

Getting started with deops
随机推荐
聊聊支付流程的设计与实现逻辑
A. Odd Selection【BruteForce】
A. Odd Selection【BruteForce】
解决Zabbix用snmp监控网络流量不准的问题
Research Report on investment trends and development planning of China's thermal insulation material industry, 2022-2028
How to deploy applications on kubernetes cluster
How to draw non overlapping bubble chart in MATLAB
List的stream中Long对象与long判等问题记录
图像24位深度转8位深度
[combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation)
SDNUOJ1015
Count the number of pixel values in the image
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
Redis core technology and practice - learning notes (11): why not just string
Talk about the design and implementation logic of payment process
Design limitations of structure type (struct)
微服务组件Sentinel控制台调用
Interviewer: why is the value nil not equal to nil?
PHP MySQL inserts data
c# . Net tool ecosystem