当前位置:网站首页>[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
2022-07-03 18:07:00 【Programmer community】
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
One 、 Positive integer split summary
Positive integer split , You need to give Number after splitting ,
The number of each split , Can have a corresponding Generate function items ,
Every Generate the item of the function
y
y
y Number of power terms , With this The number and type of values of the number to be split equally ,
Such as : A number that is split
a
1
a_1
a1 , Its It can take
0
,
1
,
2
0,1,2
0,1,2 Three values , So the corresponding Generate the item of the function
y
y
y Number of power terms Yes
3
3
3 It's worth , by
(
y
a
1
)
0
+
(
y
a
1
)
1
+
(
y
a
1
)
2
(y^{a_1})^0 + (y^{a_1})^1 + (y^{a_1})^2
(ya1)0+(ya1)1+(ya1)2 ,
In the generated function item The bottom is
y
By
Demolition
branch
Of
Count
y^{ The number to be split }
y By Demolition branch Of Count , A sub idempotent is The positive integer Possible values , Item in
y
y
y The number of power components Namely The Positive integer The number of types of values ;
Positive integer split , Allow repetition And No repetition , The difference is that Split integer The number of occurrences of ,
- If No repetition , That should be split Positive integer Can only appear
0
,
1
0,1
0,1 Time ;
- If Allow repetition , Then the positive integer can appear
0
,
1
,
2
,
⋯
0,1,2, \cdots
0,1,2,⋯ Infinite times ;
Positive integer split generator :
- Number of generated function items : Namely The number of positive integer types after splitting ; It can be divided into
2
,
4
,
8
2,4,8
2,4,8 Three numbers , So it's the multiplication of three generator terms ;
- Generate... In the function item
y
y
0
,
1
0,1
0,1 Time , The number of representative value types is
2
2
2 ;
y Power number : Corresponding A positive integer after splitting Number of value types ; A split integer may appear
- Generate... In the function item
y
y
y
Demolition
branch
after
Of
just
whole
Count
y^{ A positive integer after splitting }
y Demolition branch after Of just whole Count , A positive integer after splitting is
5
5
5 , So the bottom is
y
5
y^5
y5 ;
y Power base :
- Generate... In the function item
y
y
5
5
5 , So the bottom is
y
5
y^5
y5 , once , The corresponding item is
(
y
5
)
1
(y^5)^1
(y5)1
y The next power : Of a positive integer after splitting Number of values ; A positive integer after splitting is
Two 、 Positive integer split example
Prove any Positive integer Binary representation is unique ;
The above problem can be equivalent to , take Arbitrary positive integer , Fine Break it down into
2
2
2 The sum of the powers of , also Duplicate elements are not allowed ;
2
2
2 To the power of :
2
0
,
2
1
,
2
2
,
2
3
,
⋯
2^0, 2^1, 2^2, 2^3 , \cdots
20,21,22,23,⋯
Because repetition is not allowed , So every
2
2
2 The next power The number of , Can only be
0
,
1
0,1
0,1 Two cases ;
According to the model of positive integer splitting , Write a generating function :
2
0
2^0
20 Corresponding generating function items : The bottom is
y
2
0
=
y
y^{2^0} = y
y20=y , Value
0
,
1
0, 1
0,1 , Corresponding The generated function item is
y
0
+
y
1
=
1
+
y
y^0 + y^1 = 1+ y
y0+y1=1+y
2
1
2^1
21 Corresponding generating function items : The bottom is
y
2
1
=
y
2
y^{2^1} = y^2
y21=y2 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
2
)
0
+
(
y
2
)
1
=
1
+
y
2
(y^2)^0 + (y^2)^1 = 1+ y^2
(y2)0+(y2)1=1+y2
2
2
2^2
22 Corresponding generating function items : The bottom is
y
2
2
=
y
4
y^{2^2} = y^4
y22=y4 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
4
)
0
+
(
y
4
)
1
=
1
+
y
4
(y^4)^0 + (y^4)^1 = 1+ y^4
(y4)0+(y4)1=1+y4
2
3
2^3
23 Corresponding generating function items : The bottom is
y
2
3
=
y
8
y^{2^3} = y^8
y23=y8 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
8
)
0
+
(
y
8
)
1
=
1
+
y
8
(y^8)^0 + (y^8)^1 = 1+ y^8
(y8)0+(y8)1=1+y8
⋮
\vdots
⋮
The complete generating function is :
G
(
x
)
=
(
1
+
y
)
(
1
+
y
2
)
(
1
+
y
4
)
(
1
+
y
8
)
⋯
G(x) = (1+ y)(1+ y^2)(1+ y^4)(1+ y^8)\cdots
G(x)=(1+y)(1+y2)(1+y4)(1+y8)⋯
Break down each of the above Generate function items :
1
+
y
=
1
−
y
2
1
−
y
1+ y= \cfrac{1-y^2}{1-y}
1+y=1−y1−y2
1
+
y
2
=
1
−
y
4
1
−
y
2
1+ y^2= \cfrac{1-y^4}{1-y^2}
1+y2=1−y21−y4
1
+
y
4
=
1
−
y
8
1
−
y
4
1+ y^4= \cfrac{1-y^8}{1-y^4}
1+y4=1−y41−y8
Substitute the above three equations into the generating function
G
(
x
)
G(x)
G(x) in ,
G
(
x
)
=
1
−
y
2
1
−
y
⋅
1
−
y
4
1
−
y
2
⋅
1
−
y
8
1
−
y
4
⋯
G(x) = \cfrac{1-y^2}{1-y} \cdot \cfrac{1-y^4}{1-y^2} \cdot \cfrac{1-y^8}{1-y^4} \cdots
G(x)=1−y1−y2⋅1−y21−y4⋅1−y41−y8⋯
=
1
1
−
y
\ \ \ \ \ \ \ \ \ \ = \cfrac{1}{1-y}
=1−y1
=
1
+
y
+
y
2
+
y
3
+
⋯
\ \ \ \ \ \ \ \ \ \ = 1 + y + y^2 + y^3 + \cdots
=1+y+y2+y3+⋯
The above generating function is
1
n
1^n
1n General formula Of the corresponding sequence Generating function ;
After the above generation function is expanded , The coefficient before each term is
1
1
1 , There is only one solution ;
边栏推荐
- Ml (machine learning) softmax function to realize the classification of simple movie categories
- [combinatorics] generating function (use generating function to solve the combination number of multiple sets R)
- 面试官:值为 nil 为什么不等于 nil ?
- 圖像24比特深度轉8比特深度
- Leetcode 108 converts an ordered array into a binary search tree -- recursive method
- [mathematical logic] equivalent calculus and reasoning calculus of predicate logic (individual word | predicate | quantifier | predicate logic formula | two basic formulas | proposition symbolization
- Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
- Discussion sur la logique de conception et de mise en oeuvre du processus de paiement
- Fedora 21 installs lamp host server
- PHP MySQL inserts multiple pieces of data
猜你喜欢
How to expand the capacity of golang slice slice
Line by line explanation of yolox source code of anchor free series network (5) -- mosaic data enhancement and mathematical understanding
MySQL grouping query
Global and Chinese pediatric palliative care drug market development research and investment planning recommendations report 2022-2028
模块九作业
Should I be laid off at the age of 40? IBM is suspected of age discrimination, calling its old employees "dinosaurs" and planning to dismiss, but the employees can't refute it
Records of long objects and long judgments in the stream of list
Golang string (string) and byte array ([]byte) are converted to each other
Win32: analyse du fichier dump pour la défaillance du tas
基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
随机推荐
Class exercises
MinGW compile boost library
远程办公工具分享|社区征文
Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
Theoretical description of linear equations and summary of methods for solving linear equations by eigen
Talk about the design and implementation logic of payment process
supervisor监控Gearman任务
Setinterval CPU intensive- Is setInterval CPU intensive?
PHP MySQL Update
Applet with multiple tabs and Swipers + paging of each tab
PHP MySQL inserts data
Redis core technology and practice - learning notes (11): why not just string
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
Win32: analyse du fichier dump pour la défaillance du tas
[教程]在 CoreOS 上构建你的第一个应用
[combinatorics] generating function (property summary | important generating function)*
ArrayList analysis 3: delete elements
网格图中递增路径的数目[dfs逆向路径+记忆dfs]
分布式的任务分发框架-Gearman
Embedded-c language-7