当前位置:网站首页>[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
2022-07-03 18:07:00 【Programmer community】
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
One 、 Positive integer split summary
Positive integer split , You need to give Number after splitting ,
The number of each split , Can have a corresponding Generate function items ,
Every Generate the item of the function
y
y
y Number of power terms , With this The number and type of values of the number to be split equally ,
Such as : A number that is split
a
1
a_1
a1 , Its It can take
0
,
1
,
2
0,1,2
0,1,2 Three values , So the corresponding Generate the item of the function
y
y
y Number of power terms Yes
3
3
3 It's worth , by
(
y
a
1
)
0
+
(
y
a
1
)
1
+
(
y
a
1
)
2
(y^{a_1})^0 + (y^{a_1})^1 + (y^{a_1})^2
(ya1)0+(ya1)1+(ya1)2 ,
In the generated function item The bottom is
y
By
Demolition
branch
Of
Count
y^{ The number to be split }
y By Demolition branch Of Count , A sub idempotent is The positive integer Possible values , Item in
y
y
y The number of power components Namely The Positive integer The number of types of values ;
Positive integer split , Allow repetition And No repetition , The difference is that Split integer The number of occurrences of ,
- If No repetition , That should be split Positive integer Can only appear
0
,
1
0,1
0,1 Time ;
- If Allow repetition , Then the positive integer can appear
0
,
1
,
2
,
⋯
0,1,2, \cdots
0,1,2,⋯ Infinite times ;
Positive integer split generator :
- Number of generated function items : Namely The number of positive integer types after splitting ; It can be divided into
2
,
4
,
8
2,4,8
2,4,8 Three numbers , So it's the multiplication of three generator terms ;
- Generate... In the function item
y
y
0
,
1
0,1
0,1 Time , The number of representative value types is
2
2
2 ;
y Power number : Corresponding A positive integer after splitting Number of value types ; A split integer may appear
- Generate... In the function item
y
y
y
Demolition
branch
after
Of
just
whole
Count
y^{ A positive integer after splitting }
y Demolition branch after Of just whole Count , A positive integer after splitting is
5
5
5 , So the bottom is
y
5
y^5
y5 ;
y Power base :
- Generate... In the function item
y
y
5
5
5 , So the bottom is
y
5
y^5
y5 , once , The corresponding item is
(
y
5
)
1
(y^5)^1
(y5)1
y The next power : Of a positive integer after splitting Number of values ; A positive integer after splitting is
Two 、 Positive integer split example
Prove any Positive integer Binary representation is unique ;
The above problem can be equivalent to , take Arbitrary positive integer , Fine Break it down into
2
2
2 The sum of the powers of , also Duplicate elements are not allowed ;
2
2
2 To the power of :
2
0
,
2
1
,
2
2
,
2
3
,
⋯
2^0, 2^1, 2^2, 2^3 , \cdots
20,21,22,23,⋯
Because repetition is not allowed , So every
2
2
2 The next power The number of , Can only be
0
,
1
0,1
0,1 Two cases ;
According to the model of positive integer splitting , Write a generating function :
2
0
2^0
20 Corresponding generating function items : The bottom is
y
2
0
=
y
y^{2^0} = y
y20=y , Value
0
,
1
0, 1
0,1 , Corresponding The generated function item is
y
0
+
y
1
=
1
+
y
y^0 + y^1 = 1+ y
y0+y1=1+y
2
1
2^1
21 Corresponding generating function items : The bottom is
y
2
1
=
y
2
y^{2^1} = y^2
y21=y2 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
2
)
0
+
(
y
2
)
1
=
1
+
y
2
(y^2)^0 + (y^2)^1 = 1+ y^2
(y2)0+(y2)1=1+y2
2
2
2^2
22 Corresponding generating function items : The bottom is
y
2
2
=
y
4
y^{2^2} = y^4
y22=y4 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
4
)
0
+
(
y
4
)
1
=
1
+
y
4
(y^4)^0 + (y^4)^1 = 1+ y^4
(y4)0+(y4)1=1+y4
2
3
2^3
23 Corresponding generating function items : The bottom is
y
2
3
=
y
8
y^{2^3} = y^8
y23=y8 , Value
0
,
1
0, 1
0,1 , Then the corresponding generating function item is
(
y
8
)
0
+
(
y
8
)
1
=
1
+
y
8
(y^8)^0 + (y^8)^1 = 1+ y^8
(y8)0+(y8)1=1+y8
⋮
\vdots
⋮
The complete generating function is :
G
(
x
)
=
(
1
+
y
)
(
1
+
y
2
)
(
1
+
y
4
)
(
1
+
y
8
)
⋯
G(x) = (1+ y)(1+ y^2)(1+ y^4)(1+ y^8)\cdots
G(x)=(1+y)(1+y2)(1+y4)(1+y8)⋯
Break down each of the above Generate function items :
1
+
y
=
1
−
y
2
1
−
y
1+ y= \cfrac{1-y^2}{1-y}
1+y=1−y1−y2
1
+
y
2
=
1
−
y
4
1
−
y
2
1+ y^2= \cfrac{1-y^4}{1-y^2}
1+y2=1−y21−y4
1
+
y
4
=
1
−
y
8
1
−
y
4
1+ y^4= \cfrac{1-y^8}{1-y^4}
1+y4=1−y41−y8
Substitute the above three equations into the generating function
G
(
x
)
G(x)
G(x) in ,
G
(
x
)
=
1
−
y
2
1
−
y
⋅
1
−
y
4
1
−
y
2
⋅
1
−
y
8
1
−
y
4
⋯
G(x) = \cfrac{1-y^2}{1-y} \cdot \cfrac{1-y^4}{1-y^2} \cdot \cfrac{1-y^8}{1-y^4} \cdots
G(x)=1−y1−y2⋅1−y21−y4⋅1−y41−y8⋯
=
1
1
−
y
\ \ \ \ \ \ \ \ \ \ = \cfrac{1}{1-y}
=1−y1
=
1
+
y
+
y
2
+
y
3
+
⋯
\ \ \ \ \ \ \ \ \ \ = 1 + y + y^2 + y^3 + \cdots
=1+y+y2+y3+⋯
The above generating function is
1
n
1^n
1n General formula Of the corresponding sequence Generating function ;
After the above generation function is expanded , The coefficient before each term is
1
1
1 , There is only one solution ;
边栏推荐
- On Data Mining
- Use of unsafe class
- Design limitations of structure type (struct)
- [mathematical logic] equivalent calculus and reasoning calculus of predicate logic (individual word | predicate | quantifier | predicate logic formula | two basic formulas | proposition symbolization
- Talk about the design and implementation logic of payment process
- ArrayList analysis 3: delete elements
- A. Odd Selection【BruteForce】
- 小程序 多tab 多swiper + 每个tab分页
- Remote office tools sharing | community essay solicitation
- Ssl/bio of OpenSSL_ get_ fd
猜你喜欢
[combinatorics] generating function (summation property)
PHP MySQL inserts multiple pieces of data
Records of long objects and long judgments in the stream of list
Should I be laid off at the age of 40? IBM is suspected of age discrimination, calling its old employees "dinosaurs" and planning to dismiss, but the employees can't refute it
Micro service component sentinel console call
Golang string (string) and byte array ([]byte) are converted to each other
Valentine's day, send you a little red flower~
TCP拥塞控制详解 | 3. 设计空间
[enumeration] annoying frogs always step on my rice fields: (who is the most hateful? (POJ hundred practice 2812)
Codeforces Round #803 (Div. 2) C. 3SUM Closure
随机推荐
BFS - topology sort
PHP MySQL order by keyword
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
Setinterval CPU intensive- Is setInterval CPU intensive?
[set theory] order relation: summary (partial order relation | partial order set | comparable | strictly less than | covering | hasto | total order relation | quasi order relation | partial order rela
Design limitations of structure type (struct)
The third day of writing C language by Yabo people
Implementation of Tetris in C language
Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
ES6类的继承
An academic paper sharing and approval system based on PHP for computer graduation design
MySQL has been stopped in the configuration interface during installation
[combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation example 2 | extended to integer solution)
微服务组件Sentinel控制台调用
AcWing 271. 杨老师的照相排列【多维DP】
毕业总结
Redis core technology and practice - learning notes (IX): slicing cluster
统计图像中各像素值的数量
The vscode code is automatically modified to a compliance code when it is formatted and saved