当前位置:网站首页>【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
2022-07-02 06:26:00 【bryant_meng】

arXiv-2017
文章目录
1 Background and Motivation
随着深度学习技术的发展,CNN 在很多计算机视觉任务中崭露头角,但 increased representational power also comes increased probability of overfitting, leading to poor generalization.
为提升模型的泛化性能,模拟 object occlusion, 作者提出了 Cutout 数据增强的方法——randomly masking out square regions of input during training,take more of the image context into consideration when making decisions.
This technique encourages the network to better utilize the full context of the image, rather than relying on the presence of a small set of specific visual features(which may not always be present).
2 Related Work
- Data Augmentation for Images
- Dropout in Convolutional Neural Networks
- Denoising Autoencoders & Context Encoders(self-supervised,挖去部分,网络补上,以强化特征)
3 Advantages / Contributions
监督学习中提出 Cutout 数据增强方法(dropout 的一种形式,自监督中也有类似方法)
4 Method
初始版:remove maximally activated features


最终版:随机中心点,正方形遮挡(可以在图片外,被图片边界截取后就不是正方形了)
使用时需要中心化一下(也即减去均值)
the dataset should be normalized about zero so that modified images will not have a large effect on the expected batch statistics.
5 Experiments
5.1 Datasets and Metrics
- CIFAR-10(32x32)
- CIFAR-100(32x32)
- SVHN(Street View House Numbers,32x32)
- STL-10(96x96)

评价指标为 top1 error
5.2 Experiments
1)CIFAR10 and CIFAR100
单个实验都重复跑了5次,±x
下图探索 cutout 中不同 patch length 的影响,
2)STL-10
3)Analysis of Cutout’s Effect on Activations
引入 cutout 后浅层激活均有提升,深层 in the tail end of the distribution.
The latter observation illustrates that cutout is indeed encouraging the network to take into account a wider variety of features when making predictions, rather than relying on the presence of a smaller number of features
再聚焦下单个样本的
6 Conclusion(own) / Future work
code:https://github.com/uoguelph-mlrg/Cutout
memory footprint 内存占用
相关工作介绍 drop out 时,文章中出现了这句话:All activations are kept when evaluating the network, but the resulting output is scaled according to the dropout probability
dropout 作用在 FC 上的效果比 Conv 上好,作者的解释是:1)convolutional layers already have much fewer parameters than fully-connected layers; 2)neighbouring pixels in images share much of the same information(丢一些无伤大雅)
cutout——连续区域的仅作用在输入层的 dropout 技术
边栏推荐
- Implementation of yolov5 single image detection based on pytorch
- MySQL has no collation factor of order by
- [introduction to information retrieval] Chapter 7 scoring calculation in search system
- yolov3训练自己的数据集(MMDetection)
- Using MATLAB to realize: power method, inverse power method (origin displacement)
- [CVPR‘22 Oral2] TAN: Temporal Alignment Networks for Long-term Video
- Faster-ILOD、maskrcnn_benchmark训练coco数据集及问题汇总
- 一份Slide两张表格带你快速了解目标检测
- 使用MAME32K进行联机游戏
- Implement interface Iterable & lt; T>
猜你喜欢

机器学习理论学习:感知机

Agile development of software development pattern (scrum)

Yaml file of ingress controller 0.47.0

Drawing mechanism of view (I)

【信息检索导论】第二章 词项词典与倒排记录表

【论文介绍】R-Drop: Regularized Dropout for Neural Networks

【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach

SSM supermarket order management system

深度学习分类优化实战

Cognitive science popularization of middle-aged people
随机推荐
Agile development of software development pattern (scrum)
Deep learning classification Optimization Practice
机器学习理论学习:感知机
spark sql任务性能优化(基础)
【Programming】
Transform the tree structure into array in PHP (flatten the tree structure and keep the sorting of upper and lower levels)
Module not found: Error: Can't resolve './$$_ gendir/app/app. module. ngfactory'
Machine learning theory learning: perceptron
实现接口 Interface Iterable<T>
SSM second hand trading website
Faster-ILOD、maskrcnn_ Benchmark installation process and problems encountered
【信息检索导论】第七章搜索系统中的评分计算
yolov3训练自己的数据集(MMDetection)
MySQL has no collation factor of order by
latex公式正体和斜体
MMDetection安装问题
A summary of a middle-aged programmer's study of modern Chinese history
Get the uppercase initials of Chinese Pinyin in PHP
Two dimensional array de duplication in PHP
Implement interface Iterable & lt; T>



